Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЛЕКЦИЯ КУАЭС-3-4.docx
Скачиваний:
191
Добавлен:
04.06.2015
Размер:
366.29 Кб
Скачать

Температурная зависимость резонансного поглощения (эффект доплера).

Формула Брейта-Вигнера правильно описывает сечение резонансного взаимодействия нейтрона в системе координат, связанной с центром масс системы нейтрон-ядро мишени (при центр масс практически совпадает с положением ядра). Ядра среды совершают тепловое движение и, поэтому, в каждом акте столкновения нейтрона с ядром, должна вводиться своя система отсчета, движущаяся вместе с ядром, в то время как энергия нейтронав наших расчетах рассматривается в единой лабораторной системе. В принципе энергия замедляющегося нейтрона существенно выше энергии теплового движения ядер. Поэтому при изучении процесса замедления нейтронов пренебрегают энергией движения ядер и рассматривают процесс столкновения нейтронов с неподвижными ядрами среды. Однако, в случае резонансного взаимодействия нейтронов с ядром естественная ширина резонансасравнима со средней энергией теплового движения ядер, где– температура среды по шкале Кельвина.

Для понимания сути явления, рассмотрим одномерную и односкоростную модель движения ядер среды, а именно, будем считать, что все ядра среды имеют одну и туже скорость движения, причем половина из них движется по направлению движения нейтрона, а другая половина движется в противоположном направлении.

РИСУНОК

Полное число взаимодействий нейтронов с ядрами резонансного поглотителя в лабораторной системе отсчета, равное , можно представить в виде суммы, слагаемые которой представляют собой число взаимодействий нейтронов с ядрами резонансного поглотителя, движущимися по определенному направлению относительно скорости нейтрона. Для выбранной модели эта сумма включает всего два слагаемых

где – энергия нейтрона в лабораторной системе координат,

–резонансное сечение, выраженное относительно энергии нейтрона в лабораторной системе координат,

–скорость нейтрона в лабораторной системе координат,

–плотность нейтронов с энергией Е,

- энергия относительного движения нейтрона в системе центра масс для ядер, движущихся по и против направления движения нейтрона соответственно,

- скорость относительного движения нейтрона в системе центра масс для ядер, движущихся по и против направления движения нейтрона соответственно. Так как плотность нейтронов не зависит от того, в какой системе отсчета рассматривается энергия нейтрона, то

В системе центра масс скорость нейтрона и его энергия выражаются через скорость движения ядер следующим образом

Поскольку для ядер резонансного поглотителя , то. Кроме того, скорость теплового движения ядер, поэтому

Учитывая эти соотношения, получим

Так, например, при

По предположению средняя энергия теплового движения ядер сравнима с естественной шириной резонанса, то, нои поэтому

ДАТЬ РИСУНКИ ДВУХ РЕЗОНАНСНЫХ КРИВЫХ В СИСТЕМЕ ЦЕТРА МАСС И ЛАБОРАТОРНОЙ СИСТЕМЕ

Анализируя это выражение, можно показать, что

1.

то есть площадь под резонансной кривой, как в системе центра масс, так и в лабораторной системе координат, не изменяется. Это значит, что не изменяется и величина резонансного интеграла IR. Отсюда следует, что доплеровский эффект не оказывает влияния на поглощение нейтронов слабыми резонансами и оно не зависит от температуры среды.

где - интеграл вероятности. При<<1 а при>>1 . С ростом температуры величина падает, а с ней уменьшается и резонансное сечение в центре резонансной линии. Поскольку площадь под резонансной линией сохраняется, это означает, что происходит уширение резонанса. Для 238U сечение в максимуме для резонансов, относящихся к большим энергиям, падает примерно в 5-10 раз. Таким образом, обычный резонансный интеграл как бы отвечает условию =0, поскольку,прино всегда имеет место следующее соотношение

(72)

В общем случае

(73)

Эффективное число вторичных нейтронов

По определению, есть среднее число нейтронов деления, появляющихся в результате захвата одного теплового нейтрона в топливе. Для уранового топлива с обогащениемпо изотопу235U эта величина будет равна

(74)

где Зависимость от температуры нейтронного газа довольно слабая и отражается на величине. С ростом обогащениядовольно сильно растет и достигает своего предельного значения, равного5.

(РИСУНОК ЗАВИСИМОСТИ 5 от ОБОГАЩЕНИЯ ТОПЛИВА)