- •Учебное пособие по дисциплине: «Прикладная электроника» Северск, сгти - 2003
- •Предисловие
- •1 Импульсная и цифровая техника
- •1.1 Общие сведения
- •1.2 Ключевой режим работы биполярных транзисторов
- •1.3 Импульсный режим работы операционных усилителей. Компараторы. Триггер Шмитта
- •1.4 Позиционные системы счисления
- •1.5 Функции алгебры логики и их основные свойства
- •1.5.1 Основные определения
- •1.6 Элементарные функции алгебры логики
- •1.7 Аналитическая запись функций алгебры логики
- •1.8 Аксиомы, основные теоремы и тождества алгебры логики
- •1.9 Минимизация функций алгебры логики
- •1.9.1 Основные определения
- •1.9.2 Постановка задачи минимизации в классе днф
- •1.9.3 Аналитическая минимизация
- •4.9.4 Метод неопределенных коэффициентов и минимизирующих карт
- •1.9.5 Метод минимизирующих карт
- •1.9.6 Карты Карно
- •2 Цифровые интегральные схемы
- •2.1 Логические элементы
- •2.1.1 Логический элемент не
- •2.1.2 Логический элемент или
- •2.1.3 Логический элемент и
- •2.1.4 Логический элемент или - не
- •2.1.5 Логический элемент и - не
- •2.2 Классификация
- •2.3 Основные характеристики и параметры лэ
- •2.3.1 Сравнение обобщенных параметров цифровых микросхем
- •2.3.2 Типовые корпуса микросхем
- •2.4 Элементы с памятью (триггеры, счетчики)
- •2.4.1 Триггеры сR,Sуправлением
- •2.4.2 Триггеры с синхронным управлением
- •2.4.3 Триггеры сJk-управлением
- •2.4.4 Триггеры сD-управлением
- •2.4.5 Разное
- •3 Вопросы анализа и синтеза невременных схем
- •3.1 Логические сети
- •3.2 Теорема анализа и эквивалентные схемы
- •3.3 Синтез логических схем с одним выходом
- •3.4 Синтез логических схем со многими выходами
- •3.5 Синтез схем по неполностью определенным собственным функциям
- •3.6 Пример синтеза устройства - преобразователя кодов
- •4 Синтез и анализ схем, работа которых зависит от времени
- •4.1 Временные булевы функции. Основные определения
- •4.2 Основные свойства временных булевых функций
- •4.3 Синтез и анализ схем с помощью временных булевых функций
- •5 Схемотехника элементов интегрального исполнения
- •5.1 Схемотехника элементов серий ттл
- •5.1.1 Основные принципы построения схем
- •5.1.2 Основные параметры и характеристики серий ттл
- •5.1.3 Функциональный состав ттл ис и ттлш ис
- •5.2 Схемотехника элементов серий кмоп
- •5.2.1 Инвертор на комплиментарной моп-паре
- •5.2.2 Основные логические элементы и-не, или-не,z
- •5.2.3 Функциональный состав кмоп ис
- •5.2.4 Основные характеристики ис к564
- •5.2.4.1 Энергетические характеристики
- •5.2.4.2 Передаточные характеристики
- •5.2.4.3 Помехоустойчивость
- •5.2.4.4 Быстродействие
- •5.2.4.5 Напряжение питания
- •5.2.4.6 Входные характеристики
- •5.2.4.7 Нагрузочная способность
- •5.2.4.8 Надежность ис к564
- •5.2.5 Основные характеристики ис cерии кр1554
- •5.2.5.1 Технические характеристики
- •5.2.5.3 Предельные электрические режимы эксплуатации микросхем серии кр1554
- •5.2.5.4 Функциональный состав микросхем серии кр1554
2.3.2 Типовые корпуса микросхем


Рис. 2.25 - Типовые корпуса микросхем: а — планарный с двусторонним расположением выводов; б — типа DIP, в — пленарный с четырехсторонним расположением выводов
Условия применения микросхем, их функциональные и энергетические характеристики, а также размеры кристаллов, методы их монтажа и защиты от внешних воздействующих факторов и используемые при этом материалы способствовали развитию широкой номенклатуры корпусов микросхем. Существует шесть типов корпусов, конструктивные особенности которых приведены в технической литературе, а внешний вид широко применяемых корпусов изображен на рис. 2.25.
Каждый тип в зависимости от конструктивных особенностей подразделялся на несколько (от двух до пяти) подтипов, их отличие в размерах, количестве и расположении выводов формирует целую гамму типоразмеров корпусов. Так, корпуса второго типа (DIP) имеют более полусотни типоразмеров.
2.4 Элементы с памятью (триггеры, счетчики)
Триггер — логическое устройство, способное хранить 1 бит данных. Название единицы информации 1 бит происходит от слов binarydigit, т. е. двоичный разряд. К триггерным принято относить все устройства, имеющие два устойчивых состояния. В основе любого триггера находится кольцо из двух инверторов, показанное на рис. 2.26,а. Общепринято это кольцо изображать в виде так называемой защелки, которая показана на рис. 2.26,б. Принципиальная схема простейшего триггера-защелки, выполненного на двух инверторах резисторно-транзисторной логики, дана на рис. 2.26,в. Цепи входного управления у этой защелки нет.

Рисунок 2.26 - Кольцо из двух инверторов (а), изображение бистабильного элемента-защелки(б), схема двухтранзисторной защелки (в)
После подачи на триггер напряжения питания состояния его транзисторов могут быть равновероятны: либо насыщен транзистор VT1,aVT2 находится в состоянии отсечки, либо наоборот. Эти состояния устойчивы. Защелка не может работать как мультивибратор. Пусть по каким-то причинам при включении питания на коллекторе одного из транзисторов, например,VT1, коллекторное напряжение снижается, тем самым уменьшается базовый токIб2транзистораVT2, следовательно, падает и сила его коллекторного токаIк2. Из-за этого на коллектореVT2 напряжениеUи.п-Iк2 Rк2должно повыситься. Если это так, то должен еще быстрее возрастать базовый токIб1 транзистораVT1, ускоряя его переход к состоянию насыщения. Этот процесс идет быстро, лавинообразно. Он называется регенеративным. Процесс окончится, когда перестанет изменяться коллекторный ток транзистораVT1 и он перейдет в состояние насыщения. ТранзисторVT2 окажется в закрытом состоянии - отсечки.
Дальнейшее изменение токов Iк1 иIк2станет невозможным. Поскольку защелка симметрична, выключая и включая питаниеUи.пможно получить один из двух вариантов устойчивого состояния транзисторов в защелке. Если считать, что напряжение низкого уровня соответствует логическому 0, обнаруживаем, что запись данных в защелку способом включения и выключения питания даст равновероятный, а поэтому неопределенный результат: 1,0 или 0,1. Однозначную запись 1 бита информации в защелку можно осуществить, если снабдить ее цепями управления и запуска.
В настоящее время существует много разновидностей триггерных схем. Все они появились как результат разработки новых цепей запуска. Для записи данных, т. е. переключения состояния триггера, могут использоваться: статический запуск уровнями напряжения, запуск только одним, положительным или отрицательным перепадом импульса, а также запуск полным тактовым импульсом, когда используются его фронт и срез. Известны триггеры с подачей запускающего перепада через конденсатор, т. е. импульсный запуск только по переменной составляющей тактовой последовательности.
Для формирования сигналов управления триггерами используются часто логические элементы со свойствами триггера Шмитта.
