- •Учебное пособие по дисциплине: «Прикладная электроника» Северск, сгти - 2003
- •Предисловие
- •1 Импульсная и цифровая техника
- •1.1 Общие сведения
- •1.2 Ключевой режим работы биполярных транзисторов
- •1.3 Импульсный режим работы операционных усилителей. Компараторы. Триггер Шмитта
- •1.4 Позиционные системы счисления
- •1.5 Функции алгебры логики и их основные свойства
- •1.5.1 Основные определения
- •1.6 Элементарные функции алгебры логики
- •1.7 Аналитическая запись функций алгебры логики
- •1.8 Аксиомы, основные теоремы и тождества алгебры логики
- •1.9 Минимизация функций алгебры логики
- •1.9.1 Основные определения
- •1.9.2 Постановка задачи минимизации в классе днф
- •1.9.3 Аналитическая минимизация
- •4.9.4 Метод неопределенных коэффициентов и минимизирующих карт
- •1.9.5 Метод минимизирующих карт
- •1.9.6 Карты Карно
- •2 Цифровые интегральные схемы
- •2.1 Логические элементы
- •2.1.1 Логический элемент не
- •2.1.2 Логический элемент или
- •2.1.3 Логический элемент и
- •2.1.4 Логический элемент или - не
- •2.1.5 Логический элемент и - не
- •2.2 Классификация
- •2.3 Основные характеристики и параметры лэ
- •2.3.1 Сравнение обобщенных параметров цифровых микросхем
- •2.3.2 Типовые корпуса микросхем
- •2.4 Элементы с памятью (триггеры, счетчики)
- •2.4.1 Триггеры сR,Sуправлением
- •2.4.2 Триггеры с синхронным управлением
- •2.4.3 Триггеры сJk-управлением
- •2.4.4 Триггеры сD-управлением
- •2.4.5 Разное
- •3 Вопросы анализа и синтеза невременных схем
- •3.1 Логические сети
- •3.2 Теорема анализа и эквивалентные схемы
- •3.3 Синтез логических схем с одним выходом
- •3.4 Синтез логических схем со многими выходами
- •3.5 Синтез схем по неполностью определенным собственным функциям
- •3.6 Пример синтеза устройства - преобразователя кодов
- •4 Синтез и анализ схем, работа которых зависит от времени
- •4.1 Временные булевы функции. Основные определения
- •4.2 Основные свойства временных булевых функций
- •4.3 Синтез и анализ схем с помощью временных булевых функций
- •5 Схемотехника элементов интегрального исполнения
- •5.1 Схемотехника элементов серий ттл
- •5.1.1 Основные принципы построения схем
- •5.1.2 Основные параметры и характеристики серий ттл
- •5.1.3 Функциональный состав ттл ис и ттлш ис
- •5.2 Схемотехника элементов серий кмоп
- •5.2.1 Инвертор на комплиментарной моп-паре
- •5.2.2 Основные логические элементы и-не, или-не,z
- •5.2.3 Функциональный состав кмоп ис
- •5.2.4 Основные характеристики ис к564
- •5.2.4.1 Энергетические характеристики
- •5.2.4.2 Передаточные характеристики
- •5.2.4.3 Помехоустойчивость
- •5.2.4.4 Быстродействие
- •5.2.4.5 Напряжение питания
- •5.2.4.6 Входные характеристики
- •5.2.4.7 Нагрузочная способность
- •5.2.4.8 Надежность ис к564
- •5.2.5 Основные характеристики ис cерии кр1554
- •5.2.5.1 Технические характеристики
- •5.2.5.3 Предельные электрические режимы эксплуатации микросхем серии кр1554
- •5.2.5.4 Функциональный состав микросхем серии кр1554
2.2 Классификация
Большое разнообразие современных цифровых логических схем можно разделить
1 в зависимости от схемотехники логического элемента (ЛЭ) (типа логики):
- на схемы транзисторно-транзисторной логики (ТТЛ);
- транзисторно-транзисторной логики с диодами Шотки (ТТЛШ);
- эмиттерно-связанной логики (ЭСЛ);
- с комплементарными МОП-транзисторами (КМОП)
2 по принципу построения активного элемента:
- на биполярные;
- полевые
3 способу передачи информации:
- на синхронные;
- асинхронные
типу информационных сигналов:
- на потенциальные;
- импульсные;
- импульсно-потенциальные.
В последние годы получило развитие новое направление — схемы на основе арсенида галлия.
Для удобства разработчиков аппаратуры по технологическим, схемотехническим и конструктивным признакам цифровые интегральные микросхемы (ИМС) выпускаются сериями. Серия — это совокупность ИМС различного функционального назначения, имеющих общие электрические и эксплуатационные характеристики, выполненных по единой технологии и объединенных одним конструктивным решением (видом корпуса).
Функционально полная серия обычно содержит в своем составе несколько десятков типов ИМС, выполняющих различные логические и арифметические операции и представляющих собой как простые (комбинационные) логические элементы И, ИЛИ, НЕ, ИЛИ-НЕ, И-НЕ, И-ИЛИ НЕ, так и целые узлы и блоки аппаратуры (регистры, счетчики, сумматоры, дешифраторы, арифметическо-логические устройства (АЛУ), схемы сравнения и др.).
Степень интеграции цифровых схем определяется как
i=logN,
где N- число элементов на кристалле. В зависимости отi (и соответственноN) микросхемы делятся на простые интегральные схемы, средней степени интеграции (СИС), большие ИС (БИС) и сверхбольшие ИС (СБИС).

По функциональному назначению цифровые микросхемы разделяются на подгруппы (ЛЭ, триггеры, сумматоры и т. д.) и виды внутри подгрупп (триггеры: счетные, универсальные, Шмитта и т. д.). Условные обозначения подгрупп и видов цифровых микросхем приведены в таблице 2.1.
Таблица 2.1 -
Формирователи


Продолжение таблицы 2.1

Отечественной промышленностью выпускается достаточно большое число серий цифровых микросхем, предназначенных для построения ЭВМ, контрольно-измерительной, аппаратуры для связи и других видов радиоэлектронных устройств.
Общие сведения о микросхеме указаны в ее условном обозначении. Для характеристики материала и типа корпуса перед цифровым обозначением серии добавляется буквы: Б — бескорпусные; И, С — стеклокерамический корпус; М — металлокерамический корпус; Н — микрокорпус; Р — пластмассовый корпус. Для микросхем широкого применения в начале обозначения серии добавляется буква К.
Итак, ИС КР1533ЛА8 означает, что микросхема предназначена для широкого использования (К), выполнена в пластмассовом корпусе (Р), имеет номер серии 1533, относится к логической подгруппе (Л), по функциональному назначению является элементом И — НЕ (А) и имеет порядковый номер разработки микросхемы в данной серии 8.
Развитие цифровых микросхем идет по следующим направлениям:
микромощные на основе КМОП-структур (561, К561, 564, К564, 564В, Н564, КР1554, КР1561, К1564);
среднего быстродействия ТТЛ-логики (133, КМ 133, К155, КМ155);
маломощные на основе ТТЛ-, ТТЛШ-логики (134, КР134, 533, КМ533, К555, КМ555, КР1533);
быстродействующие на основе ТТЛ-, ТТЛШ-логики (К130, К131, КМ131, Н530, 530, М530, КР531, КР1531);
высокого быстродействия на основе ЭСЛ-логики (100, К100, 500, К500, 1500, К1500); ,
сверхвысокого быстродействия на основе арсенида галлия (К.6500).
В зависимости от требований, предъявляемых к аппаратуре, можно использовать различные серии микросхем. В радиоэлектронной аппаратуре с повышенными требованиями по быстродействию находят применение ИС 100, К500, К1500, с жесткими требованиями по потребляемой мощности при относительно невысоком быстродействии — ИС К561, К564, а быстродействующую аппаратуру с малой потребляемой мощностью позволяют создавать ИС 533, КМ533, К555, КР1533, КР1531.
