
- •Нормальное ускорение
- •Полное ускорение
- •Первый закон Ньютона
- •Второй закон Ньютона
- •Третий закон Ньютона
- •5.Момент инерции. Момент импульса. Момент силы. Основной закон динамики вращательного двидения.
- •6. Термодинамические параметры. Уравнение Менделеева-Клапейрона.
- •7. Изопроцессы. Адиабатический процесс. Их уравнения и графики.
- •Изобарный процесс
- •Изохорный процесс
- •Изотермический процесс
- •Адиабатический процесс
- •8. Первое начало термодинамики и его применение к изопроцессам и адиабатическому процессу.
- •Формулировка
- •9. Теплоемкости удельная, молярная Ср и Сv. Уравнение Майера.
- •Уравнение Майера
- •10. Круговой процесс. Цикл Карно. Кпд тепловой машины.
- •11. Напряженность и потенциал электрического поля. Закон Кулона.
- •12. Электроемкость. Конденсаторы. Энергия конденсатора. Соединение конденсаторов.
- •14. Магнитное поле. Закон Био-Савара-Лапласа.
- •15. Магнитный поток. Теорема Остроградского-Гаусса для магнитного поля.
- •16. Сила Лоренца. Эффект Холла.
- •18. Диа-,ферро- и парамагнетики. Явление магнитного гистерезиса.
- •19. Гармонические колебания. Уравнение гармонических колебаний. Период колебаний математического и физического маятников и колебательного контура.
- •Виды колебаний
- •Уравнение гармонических колебаний
- •Период физического маятника — твердое тело, совершающее колебания в гравитационном поле вокруг горизонтальной оси подвеса, расположенной выше его центра тяжести.
- •20. Бегущие и стоячие волны.
- •21, Электромагнитные волны. Шкала э/м волн. Монохроматические волны. Дисперсия света.
- •Шкала электромагнитных волн
- •22. Интерференция света. Условия максимума и минимума. Кольца Ньютона.
- •23. Дифракция света. Принцип Гюйгенса-Френеля. Ход лучей на дифракционной решетке.
- •24. Поляризация света. Виды поляризации. Закон Малюса.
- •25. Закон Брюстера. Двойное лучепреломление.
- •26. Тепловое излучение и его характеристики. Законы теплового излучения.
- •Основные свойства теплового излучения
- •Основные понятия и характеристики теплового излучения
- •Общий вид закона смещения Вина
- •27. Фотоэффект. Законы фотоэффекта. Уравнение Эйнштейна.
- •28. Строение атома. Постулаты Бора. Излучение и поглощение.
- •29. Строение ядра. Закон радиоактивного распада.
Уравнение Майера
Физический смысл уравнения Майера заключается в том, что при изобарном нагревании газа к нему должна быть подведена большая теплота, чем для такого же изохорного нагревания. Разность теплот должна быть равна работе, совершенной [ азом при изобарном расширении. [3]
10. Круговой процесс. Цикл Карно. Кпд тепловой машины.
Термодинами́ческие ци́клы — круговые процессы в термодинамике, то есть такие процессы, в которых начальные и конечные параметры, определяющие состояние рабочего тела (давление, объём, температура, энтропия), совпадают.
Термодинамические циклы являются моделями процессов, происходящих в реальных тепловых машинах для превращения тепла вмеханическую работу.
Цикл Карно́ — идеальный термодинамический цикл. Тепловая машина Карно, работающая по этому циклу, обладает максимальнымКПД из всех машин, у которых максимальная и минимальная температуры осуществляемого цикла совпадают соответственно с максимальной и минимальной температурами цикла Карно. Состоит из 2 адиабатических и 2 изотермических процессов.
Цикл Карно назван в честь французского военного инженера Сади Карно, который впервые его исследовал в 1824 году.
Одним из важных свойств цикла Карно является его обратимость: он может быть проведён как в прямом, так и в обратном направлении, при этом энтропия адиабатически изолированной (без теплообмена с окружающей средой) системы не меняется.
Коэффицие́нт поле́зного де́йствия (КПД) — характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии. Определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой; обозначается обычно η («эта»). η = Wпол/Wcyм. КПД является безразмерной величиной и часто измеряется в процентах. Математически определение КПД может быть записано в виде:
x
100 %,
где А — полезная работа, а Q — затраченная работа.
В силу закона сохранения энергии КПД всегда меньше единицы или равен ей, то есть невозможно получить полезной работы больше, чем затрачено энергии.
КПД теплово́го дви́гателя — отношение совершённой полезной работы двигателя, к энергии, полученной от нагревателя. КПД теплового двигателя может быть вычислен по следующей формуле
,
где — количество
теплоты,
полученное от нагревателя,
—
количество теплоты, отданное холодильнику.
Наибольшим КПД среди циклических машин,
оперирующих при заданных температурах
горячего источника T1 и
холодного T2,
обладают тепловые двигатели, работающие
по циклу
Карно;
этот предельный КПД равен
.
11. Напряженность и потенциал электрического поля. Закон Кулона.
Напряжённость
электри́ческого по́ля — векторная физическая
величина, характеризующая электрическое
поле в
данной точке и численно равная
отношению силы действующей
на неподвижный[1] пробный
заряд,
помещенный в данную точку поля, к величине
этого заряда
:
.
Потенциал является энергетической характеристикой поля. Он численно равен работе, которую надо затратить против сил электрического поля при перенесении единичного положительного точечного заряда из бесконечности в данную точку поля. Единица измерения потенциала - вольт. С учетом (1.16)
|
(13.20) |
Когда поле образовано
несколькими произвольно расположенными
зарядами ,
потенциал его
в
данной точке равен алгебраической сумме
потенциалов
,
создаваемых каждым зарядом в отдельности,
т.е.
|
Зако́н Куло́на — это закон, описывающий силы взаимодействия между точечными электрическими зарядами.
Был открыт Шарлем Кулоном в 1785 г. Проведя большое количество опытов с металлическими шариками, Шарль Кулон дал такую формулировку закона:
Модуль силы взаимодействия двух точечных зарядов в вакууме прямо пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния между ними
Иначе: Два точечных заряда в вакууме действуют друг на друга с силами, которые пропорциональны произведению модулей этих зарядов, обратно пропорциональны квадрату расстояния между ними и направлены вдоль прямой, соединяющей эти заряды. Эти силы называются электростатическими (кулоновскими).
Важно отметить, что для того, чтобы закон был верен, необходимы:
точечность зарядов — то есть расстояние между заряженными телами много больше их размеров — впрочем, можно доказать, что сила взаимодействия двух объёмно распределённых зарядов со сферически симметричными непересекающимися пространственными распределениями равна силе взаимодействия двух эквивалентных точечных зарядов, размещённых в центрах сферической симметрии;
их неподвижность. Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца, действующая на другой движущийся заряд;
взаимодействие в вакууме.
Однако с некоторыми корректировками закон справедлив также для взаимодействий зарядов в среде и для движущихся зарядов.[1]
В векторном виде в формулировке Ш. Кулона закон записывается следующим образом:
где —
сила, с которой заряд 1 действует на
заряд 2;
—
величина зарядов;
—
радиус-вектор (вектор, направленный от
заряда 1 к заряду 2, и равный, по модулю,
расстоянию между зарядами —
);
—
коэффициент пропорциональности. Таким
образом, закон указывает, что одноимённые
заряды отталкиваются (а разноимённые —
притягиваются).