Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физиология.doc
Скачиваний:
630
Добавлен:
04.06.2015
Размер:
872.96 Кб
Скачать

Транспирация

Из стебля вода движется в листья через черешок иди листовое влагалище, а затем по жилкам. Количество проводящих элементов в каждой жилке последовательно уменьшатся по мере их ветвления. Самые мелкие жилки состоят из единичных трахеид. Система их распределения настолько эффективна, что редко клетки ли­ста отделены от сосудистых элементов более чем двумя другими клетками. В листьях некоторых растений, особенно с С4-путем фотосинтеза, сосудистые пучки окружены одним слоем компактно расположенных паренхимных клеток, коюрые обра­зуют обкладку пучка и одновременно выполняют функцию ме­ханической ткани. Обкладка тянется до самого окончания ка­ждого сосудистого пучка. Снаружи листья имеют однослойный эпидермис, внешние стенки клеток которого покрыты кутикулой, а часто и восковым налетом. Эпидермис вместе с кутику­лой образует эффективный барьер на пути движения воды. На поверхности эпидермиса листьев часто развиты полоски, че­шуйки, которые также влияют на водный режим листа. 1ак как сильно снижают скорость движения воздуха над его поверх­ностью и рассеивают свет, что снижает потери воды (а счет транспирации.

Транспирация слагается из двух процессов: а) передвижения воды из листовых жилок в поверхностные слои стенок клеток мезофилла; б) испарения воды из клеточных с гонок в меж­клетные пространства и под устьичные полости с последующей диффузией в окружающую атмосферу через устьица или испарения воды из клеточных стенок эпидермиса в атмосферу путем кутикулярной транспирации.

Жидкая вода транспортируется к испаряющим поверхно­стям преимущественно по клеточным стенкам. Как и в корне это обусловлено тем, что в клеточных стенках вода встречает более слабое сопротивление, чем на пути от клетки к клетке че­рез протопласты и вакуоли. В межклетниках воздух насыщен водой наполовину, а водный потенциал уравновешен с водным потенциалом окружающих клеток, где он редко бывает ниже 2 МПа. Водный потенциал атмосферного воздуха тем ниже (более отрицателен), чем меньше его относительная влажность. Молекулы воды покидают растение, перемещаясь (как и вну­три растения) в направлении более низкого водногопотенциала, т. е. из тканей наружу через устьица.

Устьичная транспирация. Устьица играют важней­шую роль в газообмене между листом и атмосферой, это ос­новной проводящий путь для водяного пара, ССЬ и О^. Устьи­ца могут находиться на обеих сторонах листа, но есть виды, у которых устьица располагаются только на нижней стороне листа. Даже на одном растении у затененных листьев устьиц меньше, чем у постоянно хорошо освещаемых («световых») листьев, В среднем число устьиц колеблется от 50 до 500 на1 мм2. Транспирация с поверхности листа через устьица идет почти с такой же скоростью, как и с поверхности чистой воды. Это объясняется законом Стефана: через малые отверстия ско­рость диффузии газов пропорциональна не площади отверстия, а диаметру или длине окружности. Поэтому, хотя площадь устьичных отверстий и мала по отношению к площади всего листа (0,5 —2,0"()). испарение воды через многочисленные усть­ица идет очень интенсивно.

Кутикулярная транспирация. При открытых устьицах потери водяного пара через кутикулу листа обычно незначительны по сравнению с обшей транспирацией. Но если устьица закрыты, как. например, во время засухи, кутикулярная транспирация приобретает важное значение в водном ре­жиме растений многих видов. Интенсивность кутикулярной транспирации сильно варьирует ч разных видов: от совершен­но незначительных потерь до 50",, от общей транспирации. У молодых листьев с тонкой кутикулой кутикулярная транспи­рация составляет около половины всей транспирации. В ста­реющих листьях кутикулярное испарение воды может вновь возрастать из-за разрушения и растрескивания кутикулы. Кути­кулярная транспирация регулируется главным образом толщи­ной слоя кутикулы. Виды магнолий и хвойных, обладающие толстыми слоями кутина в кутикуле, теряют очень мало воды через эпидермис листа. И наоборот, виды с тонких слоем кутина продолжают терять воду и после того, как устьица за­кроются, и поэтому гораздо сильнее страдаю от засухи. Некоторое количество воды выделяется в результате транспирации почек поскольку почечные чешуи полностью не предохраняют их от потери влаги. Репродуктивные органы также теряют воду и в некоторых случаях ни потери могут быть очень значительными: например, корзинки и подсолнечника коробочки мака и плоды перца транспирируют сильнее, чем листья данных растений в тех же условиях. Кроме того, вода испаряется с поверхности ветвей и стволов древесных растений через чечевички и окружающие их слои пробки. Хотя общее количество воды, испаряемой через чечевички, значительно меньше того, которое теряется через листья, фактически интенсивность транспирации на единицу ис­паряющей поверхности нередко мало различается в обоих слу­чаях. Вследствие транспирации ветвей в зимнее время часто возникает водный дефицит и растения иону в результате обезвоживания.

Регуляция устьичной транспирации. Открывание устьиц регу­лируется несколькими взаимодействующими механизмами. Движущей силой, вызывающей изменение ширины устьич­ной щели, является изменение тургора за­мыкающих (иногда и прилегающих к устьицам) клеток. По ме­ре тою как замыкающая клетка устьица осмотически погло­щает воду, более тонкая и пластичная часть, удаленная от щели. Поскольку более толстый и менее эластичный участок стенки, окаймляющий щель, растягивается слабее, замыкающие клетки принимают полукруглую форму, в результате чего устьица раскрываются. Факторы внешней и внутренней среды прямо и косвенно воздействуют на устьичный аппарат, вызывая в за­мыкающих клетках изменения, которые в свою очередь приво­дят к изменению тургора. Из внешних факторов на движения устьица больше всего влияют влажность воздуха и условия во­доснабжения, свет и температура, а из внутренних — парциаль­ное давление СО2 в системе межклетников, состояние гидрата­ции растения, ионный баланс и фитогормоиы из которых нитокинин способствует открыванию устьиц, а абсцизовая кис­лота—закрыванию. На состояние устьиц влияют возраст листьев и фазы развития растения, а также су­точные ритмы. Сильнейшее влияние на движения устьиц оказывает сте­пень обеспеченности клетки водой. Различают гидропассивную и гилроактпвную устьичные реакции. Ак­тивными называют движения, зависящие от изменений в самих замыкающих клетках, пассивными - движения, определяемые изменениями в клетках, окружающих устьичные. Гидроактивное закрывание устьиц связано с сдавливающим действием со­седних клеток эпидермиса (и хлоренхимы) в условиях их пол­ного тургора (при высокой насыщенное и водой). Гидротическое открывание устьиц может произойти при ослаблении сдавливания в условиях слабого дефицита воды. Гидроактивпос закрывание устьиц произойдем как только превысит пси лощение воды корнями и снижение тургора в замыкающих клетках доспи не критического уров­ня. Этот уровень имеет разную величину в зависимое и ви­да растения, возраста листьев и степени приспособленности к окружающей среде. Реакция закрывания устьиц по мере раз­вития водною дефицита в каких обусловлена увеличением концентрации абсцизовой кислоты в клетках листа. Абсцизовая кислота подавляет на плазмалемме замыкающих клеток, вследствие чего снижается их и устьица закрываются. Для усиления синтеза АБК достаточно снижения водного потенциала листа па 0.2 МПа, еще не выра­жается в видимом завядании, по приводит к закрыванию устьиц. При нанесении АБК на основание листа ус пища закры­ваются через 3 — 9 мин. В отличие от других клен устьиц содержат хлоропласты. На при хорошем во­доснабжении ус1ыта открываются тем шире, чем причем фактором является синий свет. Фотосинтез в замыкающих клетках также участвует в ре­гуляции устьичных движений. Усиление синтеза углеводов в за­мыкающих клетках увеличивает их сосущую силу и вызывает поглощение воды, способствуя чтим открыванию устьиц. Обра­тимые превращения крахмала в сахар существенны в изменении сосущей силы и тур ори и замыкающих клетках. Открыва­ние устьиц в утренние часы регулируется главным образом светом. Как правило, после полудня по мере усиления напря­женности водного дефицита устьица закрываются.

Состояние устьиц зависит и от СО:. Если концентра­ция СО2 в подустьичной полости падает ниже 0.03%, тургор замыкающих клеток увеличивается и устьица открываются. Частично с этим связано открывание устьиц с восходом солн­ца: усиление фотосинтеза снижает концентрацию СО2 в меж­клетниках. Закрывание устьиц можно вызвать повышением концентрации СО2 в воздухе. Это происходит в межклетниках листа ночью, когда в результате отсутствия фотосинтеза и про­должающегося дыхания уровень ССК в тканях повышается. Та­кого рода регуляция устьичных движений СО2 позволяет по­нять, почему устьица закрыты ночью и открываются с восходом солнца.

Решающее влияние концентрации СО2 на степень открыто­сти устьиц обнаруживается у суккулентов, обладающих специ­фическим суточным ритмом обмена органических кислот. Эти растения открывают устьица ночью, когда парциальное давле­ние СО: в межклетниках их листьев снижается вследствие ин­тенсивного образования метала, а закрывают устьица, когда при декарбоксилировании метала днем высвобождается СО:. который накапливается в межклетниках перед дальнейшим использованием.

Таким образом, в регуляции функционирования устьиц взаимодействуют прямые и обратные связи. Одна из них предотвращает недостаток СО2, который может быть вызван фотосинтезом. Когда межклеточная концентра­ция СО2 снижается до уровня, недостаточного для фото­синтеза, это служит сил налом обратной связи и устьица открываются для обмена СО2 с внешней средой. Другой тип связи реагирует на содержание воды в листьях: при снижении содержания воды в тканях устьица за­крываются. В результате деятельности других двух ти­пов обратных связей обычно наблюдаются небольшие осцил­ляции поверхности устьиц.

Суточные колебания транспирации.

У деревьев, теневыносливых растений, многих злаков и т. д. с совершенной регуляцией устьичной транспирацией испарение воды достигает макси­мума до установления максимума дневной температуры. В по­луденные часы транспирация падает и вновь может увеличи­ваться в предвечерние часы при снижении температуры воздуха. Такой ход транспирации приводит к незначительным суточным изменениям осмотического давления и содержания воды в листьях. У видов, способных переносить резкие измене­ния содержания воды в клетках в течение дня, наблюдается одновершинный суточный ход транспира­ции с максимумом в полуденные часы. В обоих случаях ночью транспирация минимальна. Колебания интенсивности транспирации отражают измене­ния степени открытия устьиц в течение суток. Закрывание усть­иц в полдень может бы и, связано как с увеличением уровня ССК в листьях при повышении температуры воздуха (из-за уси­ления дыхания и фотодыхания), так и с возможным водным дефицитом, возникающим в тканях при высокой температуре, низкой влажности воздуха и особенно в ветреную погоду, Как вод кислоты и закрыванию устьиц. Снижение температуры воз­духа во в троп половине дня соответствует обрыванию устьиц и усилению фотосинтеза.

Интенсивность транспирации обычно выражают и граммах испаренной воды за 1 ч на единицу площади или на I г сухой массы; продуктивность транспнрации — количеством граммов сухих веществ, образуемых при расходовании каждых 1000 г воды. Величиной, обратной продуктивности транспирации, является траиспирационный коэффициент, т.е. число граммов воды, израсходованной при накоплении 1г сухих веществ. Ин­тенсивность транспирании у большинства растений составляет 15 — 250 1 м ч днем и 1—20 г м ч ночью. Продуктив­ность транспирапии у растении в умеренном климате колеблет­ся от 1 до 8 г (в среднем 3 г) на 1000 г израсходованной воды, а транспирационный коэффициент — от 125 до 1000 (в среднем, около 300 I. 1". е. около 300 воды расходуется на накопление 1 сухих веществ).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]