
- •Гоу впо «сибирский государственный технологический
- •Введение
- •Лекция 1. Предмет и задачи физиологии растений
- •Методы физиологии растений
- •Лекция 2. Структурные компоненты клетки и их физиологические функции
- •Лекция 3. Химический состав клетки
- •Углеводы
- •Функции углеводов в растении важны и разнообразны:
- •Моносахариды
- •Химические свойства
- •Полисахариды Олигосахариды
- •Высшие полисахариды
- •Белки Общая характеристика и функции белков
- •Классификация белков
- •Простые белки
- •Сложные белки
- •Жироподобные вещества
- •Лекция 4. Фотосинтез
- •Пигменты фотосинтеза
- •Химизм фотосинтеза
- •Световая фаза фотосинтеза
- •Темновая фаза фотосинтеза
- •С4 – путь фотосинтеза
- •Экология фотосинтеза
- •Лекция 5. Дыхание
- •Экология дыхания
- •Лекция 6. Водный режим растений
- •Механизмы передвижения воды по растению
- •Транспирация
- •Лекция 7. Основы почвенной микробиологии
- •Роль микроорганизмов в превращении азотистых веществ
- •Фиксация молекулярного азота
- •Превращение микроорганизмами углеродсодержащих веществ растительного происхождения
- •Лекция 8. Минеральное питание растений
- •Содержание менеральных элементов в растениях
- •Микроэлементы
- •Лекция 9. Превращение органических веществ в растении
- •Запасные вещества вегетативных органов древесных растений
- •Органические вещества вторичного происхождения
- •Превращение органических веществ в семенах
- •Лекция 10. Рост и развитие растений
- •Гормоны растений
- •Как действуют гиббереллины
- •Действие цитокининов
- •Действие абк.
- •Практическое применение этилена
- •Использование синтетических регуляторов роста (срр).
- •Коррелятивный рост
- •Регуляция роста и развития Регуляция светом темпа онтогенеза растений
- •Качество и количество света
- •Периодичность роста
- •Покой семян
- •Индивидуальное развитие растений
- •Этапы онтогенеза высших растений
- •Лекция 11. Устойчивость растений к неблагоприятным условиям среды
- •Холодостойкость растений
- •Морозоустойчивость растений
- •Жароустойчивость растений
- •Засухоустойчивость растений
- •Влияние загрязнения атмосферы на растения
- •Заключение
- •Библиографический список Основная литература
- •Доплнительная
- •Приложение а Перечень ключевых слов
Химизм фотосинтеза
В хлоропластах молекулы хлорофилла располагаются не в беспорядке, а образуют так называемые фотосинтетические единицы или фотосистемы (Фс), представляющие собой ловушки для квантов. Каждая такая фотосинтетическая единица состоит из 200 – 250 молекул хлорофилла, но только одна непосредственно участвует в передаче энергии света на синтез органического вещества. Эту центральную молекулу называют хлорофилл-ловушкой. Остальные служат для восприятия световой энергии и передачи ее на эту молекулу. Эти пигменты получили название «вспомогательных» или «антенны». Кроме хлорофилла в состав фотосистемы входит около 50 молекул каротина. Каротиноиды – обязательные компоненты всех фотосинтезирующих микроорганизмов. Роль каротина состоит в поглощении квантов света с длинной волны ниже 550 нм и защите хлорофилла от окисления кислородом, выделяющемся в процессе фотосинтеза.
Фотосинтез - сложный многоступенчатый процесс. На каком именно этапе необходима энергия света? Оказалось, что реакции синтеза органических веществ за счет включения углекислого газа в состав их молекул непосредственно энергии света не требуют. Эти реакции назвали темновыми, хотя идут они на свету, просто свет для них необязателен.
А вот для протекания так называемых световых реакций фотосинтеза, в основе которых лежит световое разложение (фотолиз) молекул воды, выделение кислорода, образование аденозинтрифосфорной кислоты (АТФ) и сильного восстановителя - вещества со сложным названием никотинамидадениндинуклеотид фосфат (НАДФ ∙ Н), он необходим. НАДФ ∙ Н образуется в результате присоединения к никотинамидадениндинуклеотид фосфату водорода, выделяющегося при фотолизе молекулы воды (фотоводорода).
Световая фаза фотосинтеза
Световая фаза фотосинтеза протекает в тилакоидах и гранах хлоропластов. Ее двигают две машины – две фотосистемы различающиеся между собой центральной молекулой хлорофилла. Хлорофилл-ловушкой первой фотосистемы (Фс I) является пигмент П700 , а второй фотосистемы (Фс II) – пигмент П680.
Первой
начинает работу Фс I
(рис. 9). Энергия кванта света, воспринятого
молекулой антенны фотосинтетической
единицы, передается на центральную
молекулу – П700,
она возбуждается и ее электрон перемещается
на более высокий энергетический уровень,
с которого легко отрывается и поступает
в цепь транспорта электронов, соединенную
с фотосинтетической единицей. Цепь
переноса электронов состоит из
окислительно-восстановительных
ферментов, размещенных в определенной
последовательности. Оторвавшийся
электрон движется по цепи переносчиков
электронов наНАДФ+,
сообщая ему отрицательный заряд. Молекула
П700,
отдавшая электрон, заполняет образующуюся
электронную вакансию за счет другой
фотосистемы (Фс II).
В свою очередь, центральная молекула
хлорофилла второй фотосистемы - пигмент
П680
поглощая энергию квантов света, переданную
ему собственной антенной, возбуждается,
электрон переходит на высокий
энергетический уровень, с которого
легко отрывается и идет по другой цепи
переносчиков электронов на восполнение
электронной вакансии у П700.
Когда электрон движется на освободившееся
место, его энергия переходит в энергию
макроэргических (богатых энергией)
связей молекул АТФ,
образующихся путем присоединения
остатков молекул фосфорной кислоты к
АДФ
(аденозиндифосфорной
кислоте). Но теперь образовалась
электронная вакансия у П680.
Чтобы восполнить недостающие электроны
в ФсII,
происходит разложение молекул воды и
выделение кислорода (фотолиз).
Электроны, высвобождающиеся в ходе этой реакции, заполняют электронную вакансию у П680. А вот протоны водорода движутся к НАДФ- и взаимодействуют с ним:
Итак, при движении возбужденных электронов от молекул-ловушек по цепи транспорта электронов происходит образование очень важных веществ: АТФ (запас энергии) и НАДФ ∙ Н (сильный восстановитель). Вот они - то и используются в ходе синтеза органических веществ из неорганических, в так называемых темновых реакциях фотосинтеза. Такой путь переноса электронов получил название нециклического фотофосфорилирования.
Есть и другой путь световых реакций. Если в хлоропластах накоплено достаточное количество восстановителя (НАДФ ∙ Н) и его больше не требуется, то электроны движутся по циклическому пути. В этом случае работает только первая фотосистема. Возбужденные электроны от П700 двигаются по цепи переносчиков электронов и возвращаются на П700. При этом происходит синтез АТФ. Такой тип образования АТФ в ходе фотосинтеза назвали циклическим фотофосфорилированием.