
- •Исходные данные
- •Реферат
- •Введение
- •1 Анализ линейной системы автоматического регулирования
- •1.1 Преобразование структурной схемы и определение передаточных функций системы
- •1.2 Исследование системы на устойчивость по критерию Гурвица
- •1.3 Исследование системы на устойчивость по критерию Михайлова
- •1.3 Исследование системы на устойчивость по критерию Найквиста
- •1.4 Определение устойчивости системы по логарифмическим частотным характеристикам
- •2 Синтез линейной системы автоматического регулирования по логарифмическим частотным характеристикам
- •2.1 Построение лачх исходной системы
- •2.2 Построение желаемой лачх
- •2.3 Проверка запаса устойчивости по фазе скорректированной системы
- •2.4 Передаточная функция разомкнутой скорректированной системы
- •2.5 Построение лачх последовательного корректирующего устройства
- •2.6 Передаточная функция корректирующего устройства
- •3 Расчет переходного процесса скорректированной системы
- •3.1 Определение передаточной функции замкнутой скорректированной системы
- •3.2 Расчет вещественной характеристики замкнутой системы
- •3.3 Расчет переходного процесса методом трапеций
- •3.4 Оценка качества переходного процесса
- •4 Выбор схемы и расчет параметров корректирующего устройства
- •4.1 Выбор схемы корректирующего устройства
- •4.2Принципиальная схема корректирующего устройства
- •4.3 Расчет параметров корректирующего устройства
- •Заключение
- •Список использованных источников
3.3 Расчет переходного процесса методом трапеций
Вещественную частотную характеристику (рисунок 10) заменим мало отличающимися от кривой горизонтальными и наклонными прямолинейными участками, образующими с осью ординат трапеции. Действительная ВЧХ при этом будет представлена как алгебраическая сумма трапецеидальных частотных характеристик
, (3.6)
где
‑ число трапеций.
Горизонтальные
отрезки чертим в точках экстремумов.
Первый отрезок должен начинаться из
точки
,
т.к. эта точка определяет конечное
значение переходной характеристики
.
Более тщательно нужно аппроксимировать
начальный участок ВЧХ. Конечный участок
с ординатами, меньшими по абсолютному
значению, чем
можно не принимать во внимание.
Рисунок 11 – Замена вещественной частотной характеристики трапециями.
Полученные трапеции
вычертим на другом чертеже (рисунок 12)
таким образом, чтобы основание каждой
из них легло на ось
.
Рисунок 12 – Трапеции вещественной частотной характеристики.
Определим
параметры трапеций.
Из графиков находим
,
.
По значениям
вычислим коэффициенты наклона
(3.7)
и округлим их до ближайшего из значений 0; 0,05; 0,1; 0,15; … 0,95; 1.
Подставив численные значения, получим
.
Рассчитаем переходные процессы отдельно для каждой трапеции.
В таблице h-функций
таблица 4.2 с.222 [3] для каждой i-й трапеции
отыскивается столбец, соответствующий
значению коэффициента наклона
.
Затем для ряда значений условного
времени
выписывают соответствующие им значения
.
По значениям
и
вычисляют значения действительного
времени
и составляющей переходной характеристики
:
;
. (3.8)
Результаты оформим в таблице 5.
Таблица
5 – Расчет графиков составляющих
переходной характеристики
Трапеция 1 |
Трапеция 2 |
Трапеция 3 | |||||||||
n=2 Р=-0.1 =0 |
n=45 Р=-0.3 =0,5 |
n=8 Р=0.7 =0,5 | |||||||||
t |
|
|
|
t |
|
|
|
t |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Продолжение
таблицы 5
Трапеция 4 |
Трапеция 5 | ||||||
n=9 Р=0.4=0,9 |
n=18Р=0.3=0,5 | ||||||
t |
|
|
|
t |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Далее построим
графики составляющих переходной
характеристики
.
Все составляющие расположим на одном
чертеже (рисунок 12) с учетом знака,
который определяется знаком высоты
соответствующей трапеции.
График переходной характеристики замкнутой системы получим путем суммирования ординат всех составляющих в равные моменты времени
. (3.9)
Рисунок 13 – График переходного процесса и его составляющие.