- •Исследование взаимодействия ди(метилтио)нитримина с нуклеофильными реагентами
- •Введение
- •1 Литературный обзор
- •1.1 Ди(метилтио)нитримин
- •1.2 Нитропроизводные мочевины
- •1.3 Заключение по литературному обзору
- •2. Экспериментальная часть
- •2.1 Используемые приборы и оборудование
- •2.2 Синтез исходных соединений и ди(метилтио)нитримина
- •2.2.1 Синтез роданистого метила
- •2.2.2 Получение сульфата s-метилизотиомочевины
- •2.2.3 Получение метилмеркаптана
- •2.2.4 Получение гидрохлорида s,s′-ди(метилтио)имина
- •2.3 Исследование взаимодействия s,s′-ди(метилтио)-n-нитроимина с нуклеофильными реагентами
- •2.3.1 Изучение реакции взаимодействия s,s′-ди(метилтио)-n-нитроимина с едким натром
- •2.3.1.1 Получение s-метилтио-n-нитрокарбамата
- •2.3.1.1.1 Очистка s-метилтио-n-нитрокарбамата
- •2.3.1.2 Получение натриевой соли s-метилтио-n-нитрокарбамата
- •2.3.2 Изучение реакции взаимодействия s,s′-ди(метилтио)-n-нитроимина с едким калием
- •2.3.2.1 Получение калиевой соли s-метилтио-n-нитрокарбамата
- •2.4.1 Изучение реакции взаимодействия s-метилтио-n-нитрокарбамата с раствором аммиака
- •2.4.2 Изучение реакции взаимодействия s-метилтио-n-нитрокарбамата с гидразином-гидратом
- •2.4.3 Изучение реакции взаимодействия натриевой соли s-метилтио-n-нитрокарбамата с гидразином-гидратом
- •2.4.4 Изучение реакции взаимодействия калиевой соли s-метилтио-n-нитрокарбамата с гидразином - гидратом
- •3 Обсуждение результатов
- •3.1 Результаты синтеза гидрохлорида s,s′-ди(метилтио)имина
- •3.2 Результаты синтеза s,s′-ди(метилтио)-n-нитроимина
- •3.3 Результаты изучения реакции взаимодействия s,s′-ди(метилтио)-n-нитроимина с едким натром, а также с едким калием
- •3.4 Результаты изучения реакций взаимодействия s-метилтио-n-нитрокарбамата и его солей с гидразином
- •3.4.1 Температуры плавления полученных солей 4-нитросемикарбазида
- •3.5 Результаты изучения реакций взаимодействия s-метилтио-n-нитрокарбамата с аммиаком
- •4 Выводы
- •5. Безопасность и экологичность работы
- •5.1Факторы опасности, вредности при выполнении дипломной работы
- •5.2 Характеристика веществ, используемых в работе
- •5.3 Характеристика потенциальных опасностей в процессе выполнения экспериментальной части работы и методы защиты
- •5.4 Санитарно-гигиенические характеристики лаборатории
- •5.5 Характеристика системы вентиляции
- •5.6 Характеристика системы отопления
- •5.7Характеристика освещения лаборатории
- •5.8 Пожарная профилактика и средства пожаротушения
- •5.9 Мероприятия личной безопасности при проведении работ
- •5.10 Средства индивидуальной защиты
- •5.11 Охрана окружающей среды
- •6. Гражданская оборона и чрезвычайные ситуации
- •7. Экономическая часть
- •7.1 Организация исследований
- •7.1.1Организация рабочего места
- •7.1.2 Нормирование труда
- •7.1.3 Охрана труда и эстетика производства
- •7.1.4 Режим труда и отдыха
- •7.1.5 Сетевой график выполнения работ
- •7.1.6 Определение плановой себестоимости выполнения нир
- •7.1.7 Статья «Сырье и материалы»
- •7.1.8 Статья «Покупные изделия, полуфабрикаты»
- •7.1.9 Статья «Охрана труда и техника безопасности»
- •7.1.10 Статья «Энергетические ресурсы»
- •7.1.11 Статья «Основная заработная плата»
- •7.1.12 Статья « Расчет амортизации помещения и оборудования»
- •7.1.13 Статья «Накладные расходы»
- •7.1.14 Составление калькуляции плановой себестоимости проведения нир
2.4.4 Изучение реакции взаимодействия калиевой соли s-метилтио-n-нитрокарбамата с гидразином - гидратом
Было проведено два параллельных одинаковых опыта. Эксперименты велись при мольных соотношениях калиевой соли S-метилтио-N-нитрокарбамата и 73,5 %-ного раствора гидразина - гидрата 1:2 в спиртовых растворах (на 0,2 г соединения 4 мл спирта). Реакционные массы были оставлены на несколько суток. Выпавшие кристаллы были отфильтрованы и промыты спиртом, а фильтраты испарены на воздухе. В ходе экспериментов УФ-спектры не снимались. Сухие кристаллы были взвешены и их массы составили mкр1=0,1282 г и mкр2=0,1272 г, выходы 70,60% и 70,04%, cоответственно. Также был определен вес продуктов из фильтратов (0,0428 г и 0,0476 г). Сняты УФ-спектры продуктов из фильтратов, их пики максимумов поглощения составили 258,5 (0,182) и 259,0 (0,254) нм при концентрациях растворов 1·10-4 моль/л и 1,025·10-4 моль/л соответственно.
Исходя из УФ-спектров, в фильтратах содержится целевой продукт с концентрациями 23,8% (0,0102 г из 0,0428 г) и 33,3% по массе (0,0158 г из 0,476 г). Оставшиеся 76,2% и 66,7% – продукты разложения, не имеющие в своих структурах нитроиминной группы, которая дает пик в УФ-спектре.
График ИК-спектров калиевой соли S-метилтио-N-нитрокарбамата с выделением характерных пиков представлен на рисунке 2.6.
Для калиевой соли 4-нитросемикарбазида можно выделить следующие характерные пики: 3325 см-1, 3228 см-1, 3018 см-1, 2925 см-1, 2852 см-1, 1667 см-1, 1619 см-1, 1535 см-1, 1359 см-1, 1263 см-1, 1187 см-1, 1048 см-1, 1029 см-1, 957 см-1, 825 см-1, 781 см-1, 689 см-1.

Рисунок 2.6 – ИК-спектры калиевой соли 4-нитросемикарбазида
3 Обсуждение результатов
3.1 Результаты синтеза гидрохлорида s,s′-ди(метилтио)имина
Гидрохлорид S,S′-ди(метилтио)имина получают при взаимодействии роданистого метила и метилмеркаптана в растворе хлороформа, при пропускании через него сухого хлористого водорода:

То, что получается гидрохлорид S,S′-ди(метилтио)имина, подтверждается данными УФ спектроскопии (рисунок 3.1). УФ-спектр гидрохлорида S,S′-ди(метилтио)имина содержит два пика с длиной волны 238,0 нм и 261,0 нм и величиной поглощения 0,709 и 0,696, соответственно, при концентрации раствора С=1·10–4 моль/л. УФ спектр соединения соответствует спектру заведомого образца.

Рисунок 3.1 - УФ-спектр гидрохлорида S,S′-ди(метилтио)имина.
3.2 Результаты синтеза s,s′-ди(метилтио)-n-нитроимина
S,S′-ди(метилтио)-N-нитроимин получают нитрованием гидрохлорида S,S′-ди(метилтио)имина 98%-ой азотной кислотой в среде уксусного ангидрида:

Для увеличения выхода выдержка после дозировки гидрохлорида S,S′-ди(метилтио)имина производилась в герметично закрытой колбе. Установлено, что повышению выхода способствует препятствие удалению окислов азота из реакционного объема.
Вероятно, механизм нитрования зависит от окислов азота и идет по радикальному механизму, подобно радикальному нитрованию ароматических аминов.
Качество продукта контролировали УФ-спектроскопически. В УФ-спектре водного раствора S,S′-ди(метилтио)-N-нитроимина наблюдается два пика при длинах волн 210,0 и 307,0 нм с величиной поглощения 0,657 и 1,513, соответственно (при концентрации раствора 110-4 моль/л). Пик поглощения с длиной волны 307,0 нм связан с n→π* переходом в нитроиминной группе (рисунок 3.2)

Рисунок 3.2 - УФ-спектр S,S-ди(метилтио)-N-нитроимина
