
- •Классификация случайных событий. Классическое определение вероятности. Свойства вероятности события, непосредственный подсчет вероятности. Примеры.
- •Свойства вероятности события:
- •Статистическое определение вероятности события и условия его применимости. Пример.
- •Несовместные и совместные события. Сумма событий. Теорема сложения вероятностей (с доказательством).
- •Полная группа событий. Противоположные события. Соотношение между вероятностями противоположных событий (с выводом).
- •Зависимые и независимые события. Произведение событий. Понятие условной вероятности. Теорема умножения вероятностей (с доказательством).
- •Формулы полной вероятности и Байеса (с доказательством). Примеры.
- •Повторные независимые испытания. Формула Бернулли (с выводом). Примеры.
- •Локальная теорема Муавра-Лапласа, условия ее применимости. Свойства функции Дх). Пример.
- •Асимптотическая формула Пуассона и условия ее применимости. Пример.
- •Интегральная теорема Муавра-Лапласа и условия ее применимости. Функция Лапласа ф(х) и ее свойства. Пример.
- •Следствия из интегральной теоремы Муавра-Лапласа (с выводом). Примеры.
- •Математическое ожидание дискретной случайной величины и его свойства (с выводом). Примеры.
- •Дисперсия дискретной случайной величины и ее свойства (с выводом). Примеры.
- •Функция распределения случайной величины, ее определение, свойства и график.
- •Непрерывная случайная величина (нов). Вероятность отдельно взятого значения нсв. Математическое ожидание и дисперсия нсв.
- •Плотность вероятности непрерывной случайной величины, ее определение, свойства и график.
- •Случайная величина, распределенная по биномиальному закону, ее математическое ожидание и дисперсия. Закон распределения Пуассона.
- •Математическое ожидание и дисперсия числа и частости наступлений события в п повторных независимых испытаниях (с выводом).
- •Определение нормального закона распределения. Теоретико-вероятностный смысл его параметров. Нормальная кривая и зависимость ее положения и формы от параметров.
- •Функция распределения нормально распределенной случайной величины и ее выражение через функцию Лапласа.
- •Формулы для определения вероятности: а) попадания нормально распределенной случайной величины в заданный интервал; б) ее отклонения от математического ожидания. Правило «трехсигм».
- •Понятие двумерной (/7-мерной) случайной величины. Примеры. Таблица ее распределения. Одномерные распределения ее составляющих. Условные распределения и их нахождение по таблице распределения.
- •Ковариация и коэффициент корреляции случайных величин. Связь между екоррелированностью и независимостью случайных величин.
- •Понятие о двумерном нормальном законе распределения. Условные математические ожидания и дисперсии.
- •Неравенство Маркова (лемма Чебышева) (с выводом). Пример.
- •Неравенство Чебышева (с выводом) и его частные случаидля случайной величины, распределенной по биномиальному закону, и для частости события.
- •Теорема Чебышева (с доказательством), ее значение и следствие. Пример.
- •Закон больших чисел. Теорема Бернулли (с доказательством) и ее значение. Пример.
- •Неравенство Чебышева для средней арифметической случайных величин (с выводом).
- •Центральная предельная теорема. Понятие о теореме Ляпунова и ее значение. Пример.
- •Вариационный ряд, его разновидности. Средняя арифметическая и дисперсия ряда. Упрощенный способ их расчета.
- •Понятие об оценке параметров генеральной совокупности. Свойства оценок: несмещенность, состоятельность, эффективность.
- •Оценка генеральной доли по собственно-случайной выборке. Несмещенность и состоятельность выборочной доли.
- •Оценка генеральной средней по собственно-случайной выборке. Несмещенность и состоятельность выборочной средней.
- •Оценка генеральной дисперсии по собственно-случайной выборке. Смещенность и состоятельность выборочной дисперсии (без вывода). Исправленная выборочная дисперсия.
- •Понятие об интервальном оценивании. Доверительная вероятность и доверительный интервал. Предельная ошибка выборки. Ошибки репрезентативности выборки (случайные и систематические).
- •Формула доверительной вероятности при оценке генеральной средней. Средняя квадратическая ошибка повторной и бесповторной выборок и построение доверительного интервала для генеральной средней.
- •Определение необходимого объема повторной и бесповторной выборок при оценке генеральной средней и доли.
- •Статистическая гипотеза и статистический критерий. Ошибки 1-го и 2-го рода. Уровень значимости и мощность критерия. Принцип практической уверенности.
- •Построение теоретического закона распределения по опытным данным. Понятие о критериях согласия.
- •Критерий согласия х2-Пирсона и схема его применения.
- •Функциональная, статистическая и корреляционная зависимости. Различия между ними. Основные задачи теории корреляции.
- •Линейная парная регрессия. Система нормальных уравнений для определения параметров прямых регрессии. Выборочная ковариация. Формулы для расчета коэффициентов регрессии.
- •Упрощенный способ:
- •Оценка тесноты связи. Коэффициент корреляции (выборочный), его свойства и оценка достоверности.
Закон больших чисел. Теорема Бернулли (с доказательством) и ее значение. Пример.
Под законам больших чисел в широком смысле понимается общий принцип, согласно которому, по формулировке академика Колмогорова, совокупное действие большого числа случайных факторов приводит (при некоторых весьма общих условиях) к результату, почти не зависящему от случая. Другими словами, при большом числе случайных величин их средний результат перестает быть случайным и может быть предсказан с большой степенью определенности.
Теорема. Частость события в n повторных независимых испытаниях, в каждом из которых оно может произойти с одной и той же вероятностью p, при неограниченном увеличении числа n сходится по вероятности к вероятности р этого события в отдельном испытании:
Или
☺ Заключение
теоремы непосредственно вытекает из
неравенства Чебышева для частости
события
при n → ∞. ☻
Смысл теоремы Бернулли состоит в том, что при большом числе n повторных независимых испытаний практически достоверно, что частость (или статистическая вероятность) события m/n - величина случайная, как угодно мало отличается от неслучайной величины р - вероятности события, т.е. практически перестает быть случайной.
Теорема Бернулли является следствием теоремы Чебышева.
Неравенство Чебышева для средней арифметической случайных величин (с выводом).
Центральная предельная теорема. Понятие о теореме Ляпунова и ее значение. Пример.
Центральная предельная теорема представляет собой группу теорем, посвященных установлению условий, при к-ых возникает нормальный закон распределения. Среди этих теорем важнейшее место принадлежит теореме Ляпунова.
Теорема
Ляпунова.
Если
независимые случайные величины, у каждой
из которых существует матем-кое ожидание
,
дисперсия
,
абсолютный центральный момент третьего
порядка
и
(6.20)
то закон распределения
суммы
приn
→ ∞ неограниченно приближается к
нормальному с матем-ким ожиданием
и дисперсией
.
Например, потребление электроэнергии для бытовых нужд за месяц в каждой квартире многоквартирного дома можно представить в виде n различных случайных величин. Если потребление электроэнергии в каждой квартире по своему значению резко не выделяется среди остальных, то на основании теоремы Ляпунова можно считать, что потребление электроэнергии всего дома, т.е. сумма n независимых случайных величин будет случайной величиной, имеющей приближенно нормальный закон распределения. Если, например, в одном из помещений дома разместится вычислительный центр, у которого уровень потребления электроэнергии несравнимо выше, чем в каждой квартире для бытовых нужд, то вывод о приближенно нормальном распределении потребления электроэнергии всего дома будет неправомерен, так как нарушено условие (6.20), ибо потребление электроэнергии вычислительного центра будет играть превалирующую роль в образовании всей суммы потребления.
Следствие.
Если
- независимые случайные величины, у
которых существуют равные математические
ожидания
,
дисперсии
и абсолютные центральные моменты
третьего порядка
(i = 1, 2,...n), то закон распределения суммы
приn
→ ∞ неограниченно приближается к
нормальному закону.
В частности, если
все случайные величины
одинаково распределены, то закон
распределения их суммы неограниченно
приближается к нормальному закону приn
→ ∞.