
- •Классификация случайных событий. Классическое определение вероятности. Свойства вероятности события, непосредственный подсчет вероятности. Примеры.
- •Свойства вероятности события:
- •Статистическое определение вероятности события и условия его применимости. Пример.
- •Несовместные и совместные события. Сумма событий. Теорема сложения вероятностей (с доказательством).
- •Полная группа событий. Противоположные события. Соотношение между вероятностями противоположных событий (с выводом).
- •Зависимые и независимые события. Произведение событий. Понятие условной вероятности. Теорема умножения вероятностей (с доказательством).
- •Формулы полной вероятности и Байеса (с доказательством). Примеры.
- •Повторные независимые испытания. Формула Бернулли (с выводом). Примеры.
- •Локальная теорема Муавра-Лапласа, условия ее применимости. Свойства функции Дх). Пример.
- •Асимптотическая формула Пуассона и условия ее применимости. Пример.
- •Интегральная теорема Муавра-Лапласа и условия ее применимости. Функция Лапласа ф(х) и ее свойства. Пример.
- •Следствия из интегральной теоремы Муавра-Лапласа (с выводом). Примеры.
- •Математическое ожидание дискретной случайной величины и его свойства (с выводом). Примеры.
- •Дисперсия дискретной случайной величины и ее свойства (с выводом). Примеры.
- •Функция распределения случайной величины, ее определение, свойства и график.
- •Непрерывная случайная величина (нов). Вероятность отдельно взятого значения нсв. Математическое ожидание и дисперсия нсв.
- •Плотность вероятности непрерывной случайной величины, ее определение, свойства и график.
- •Случайная величина, распределенная по биномиальному закону, ее математическое ожидание и дисперсия. Закон распределения Пуассона.
- •Математическое ожидание и дисперсия числа и частости наступлений события в п повторных независимых испытаниях (с выводом).
- •Определение нормального закона распределения. Теоретико-вероятностный смысл его параметров. Нормальная кривая и зависимость ее положения и формы от параметров.
- •Функция распределения нормально распределенной случайной величины и ее выражение через функцию Лапласа.
- •Формулы для определения вероятности: а) попадания нормально распределенной случайной величины в заданный интервал; б) ее отклонения от математического ожидания. Правило «трехсигм».
- •Понятие двумерной (/7-мерной) случайной величины. Примеры. Таблица ее распределения. Одномерные распределения ее составляющих. Условные распределения и их нахождение по таблице распределения.
- •Ковариация и коэффициент корреляции случайных величин. Связь между екоррелированностью и независимостью случайных величин.
- •Понятие о двумерном нормальном законе распределения. Условные математические ожидания и дисперсии.
- •Неравенство Маркова (лемма Чебышева) (с выводом). Пример.
- •Неравенство Чебышева (с выводом) и его частные случаидля случайной величины, распределенной по биномиальному закону, и для частости события.
- •Теорема Чебышева (с доказательством), ее значение и следствие. Пример.
- •Закон больших чисел. Теорема Бернулли (с доказательством) и ее значение. Пример.
- •Неравенство Чебышева для средней арифметической случайных величин (с выводом).
- •Центральная предельная теорема. Понятие о теореме Ляпунова и ее значение. Пример.
- •Вариационный ряд, его разновидности. Средняя арифметическая и дисперсия ряда. Упрощенный способ их расчета.
- •Понятие об оценке параметров генеральной совокупности. Свойства оценок: несмещенность, состоятельность, эффективность.
- •Оценка генеральной доли по собственно-случайной выборке. Несмещенность и состоятельность выборочной доли.
- •Оценка генеральной средней по собственно-случайной выборке. Несмещенность и состоятельность выборочной средней.
- •Оценка генеральной дисперсии по собственно-случайной выборке. Смещенность и состоятельность выборочной дисперсии (без вывода). Исправленная выборочная дисперсия.
- •Понятие об интервальном оценивании. Доверительная вероятность и доверительный интервал. Предельная ошибка выборки. Ошибки репрезентативности выборки (случайные и систематические).
- •Формула доверительной вероятности при оценке генеральной средней. Средняя квадратическая ошибка повторной и бесповторной выборок и построение доверительного интервала для генеральной средней.
- •Определение необходимого объема повторной и бесповторной выборок при оценке генеральной средней и доли.
- •Статистическая гипотеза и статистический критерий. Ошибки 1-го и 2-го рода. Уровень значимости и мощность критерия. Принцип практической уверенности.
- •Построение теоретического закона распределения по опытным данным. Понятие о критериях согласия.
- •Критерий согласия х2-Пирсона и схема его применения.
- •Функциональная, статистическая и корреляционная зависимости. Различия между ними. Основные задачи теории корреляции.
- •Линейная парная регрессия. Система нормальных уравнений для определения параметров прямых регрессии. Выборочная ковариация. Формулы для расчета коэффициентов регрессии.
- •Упрощенный способ:
- •Оценка тесноты связи. Коэффициент корреляции (выборочный), его свойства и оценка достоверности.
Ковариация и коэффициент корреляции случайных величин. Связь между екоррелированностью и независимостью случайных величин.
Пусть имеется
двумерная СВ (Х,Y),
распределение которой известно, т.е.
известна табл. 5.1 или совместная плотность
вероятности
.
Тогда можно найти математические
ожидания М(Х) = ах,
М(Y)
= ау
и дисперсии
и
одномерных составляющих Х иY.
Однако математические ожидания и
дисперсии случайных величин Х и Y
недостаточно полно характеризуют
двумерную случайную величину (Х,Y),
т.к. не выражают степени зависимости ее
составляющих Х и Y
эту роль выполняют ковариация
и коэффициент
корреляции.
Определение. Ковариацией (или корреляционным моментом) Кху случайных величин Х и Y называется математическое ожидание произведения отклонений этих величин от своих математических ожиданий, т.е.
,
Или
,
Где
,
.
Из определения
следует, что
.
Кроме того,
.
т.е. ковариация СВ с самой собой есть ее дисперсия.
Для
дискретных случайных величин:
.
Для
непрерывных случайных величин:
.
Ковариация двух
случайных величин характеризует как
степень
зависимости
случайных величин, так и их рассеяние
вокруг точки
.
Об этом, в частности, свидетельствуютсвойства
ковариации случайных величин.
Ковариация двух независимых случайных величин равна нулю.
Ковариация двух случайных величин равна математическому ожиданию их произведения минус произведение математических ожиданий, т.е.
, или
.
Ковариация двух случайных величин по абсолютной величине не превосходит произведения их средних квадратических отклонений, т.е.
.
Ковариация, как уже отмечено, характеризует не только степень зависимости двух случайных величин, но и их разброс, рассеяние. Кроме того, она - величина размерная, ее размерность определяется произведением размерностей случайных величин. Это затрудняет использование ковариации для оценки степени зависимости для различных случайных величин. Этих недостатков лишен коэффициент корреляции.
Определение. Коэффициентом корреляции двух случайных величин называется отношение их ковариации к произведению средних квадратических отклонений этих величин:
.
Из определения
следует, что
.
Очевидно также, что коэффициент корреляции
естьбезразмерная
величина.
Свойства коэффициента корреляции:
Коэффициент корреляции принимает значения на отрезке [-1;1], т.е.
.
Если случайные величины независимы, то их коэффициент корреляции равен нулю, т.е.
.
Случайные величины называются некоррелированными, если их коэффициент корреляции равен нулю. Т.о., из независимости случайных величин следует их некоррелированность. Обратное утверждение, вообще говоря, неверно: из некоррелированности двух случайных величин еще не следует их независимость.
Если коэффициент корреляции двух случайных величин равен (по абсолютной величине) единице, то между этими случайными величинами существует линейная функциональная зависимость.
Понятие о двумерном нормальном законе распределения. Условные математические ожидания и дисперсии.
Определение. Случайная величина (Х,Y) называется распределенной по двумерному нормальному закону, если ее совместная плотность имеет вид:
Где
Из определения
следует, что двумерный нормальный закон
распределения определяется пятью
параметрами:
.
и
аналогично
.;
и аналогично
.;
.
Т.о., параметры
и
выражают математические ожидания
случайных величин Х иY,
параметры
и
- их дисперсии, а
- коэффициент корреляции между случайными
величинами Х иY.
Нетрудно убедиться в том, что каждый из условных законов распределения случайных величин Х и Y является нормальным с условным математическим ожиданием и условной дисперсией, определяемыми по формулам:
,
,
,
.
Теорема. Если две нормально распределенные случайные величины Х и Y некоррелированы, то они независимы.
Т.о., для нормально распределенных случайных величин термины «некоррелированность» и «независимость» равносильны.