Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
668
Добавлен:
03.06.2015
Размер:
8.25 Mб
Скачать

676—Chapter 37. Panel Estimation

The next portion of output provides additional test detail, showing the coefficient estimates from both the random and fixed effects estimators, along with the variance of the difference and associated p-values for the hypothesis that there is no difference. Note that in some cases, the estimated variances can be negative so that the probabilities cannot be computed.

Cross-section random effects test comparisons:

Variable

Fixed

Random

Var(Diff.)

Prob.

 

 

 

 

 

 

 

 

 

 

F

0.110124

0.109781

0.000031

0.9506

C01

0.310065

0.308113

0.000006

0.4332

 

 

 

 

 

 

 

 

 

 

The bottom portion of the output contains the results from the corresponding fixed effects estimation:

Cross-section random effects test equation:

Dependent Variable: I

Method: Panel Least Squares

Date: 08/18/09 Time: 12:51

Sample: 1935 1954

Periods included: 20

Cross-sections included: 10

Total panel (balanced) observations: 200

Variable

Coefficient

Std. Error

t-Statistic

Prob.

 

 

 

 

 

 

 

 

 

 

C

-58.74394

12.45369

-4.716990

0.0000

F

0.110124

0.011857

9.287901

0.0000

C01

0.310065

0.017355

17.86656

0.0000

 

 

 

 

 

 

 

 

 

 

Effects Specification

Cross-section fixed (dummy variables)

R-squared

0.944073

Mean dependent var

145.9583

Adjusted R-squared

0.940800

S.D. dependent var

216.8753

S.E. of regression

52.76797

Akaike info criterion

10.82781

Sum squared resid

523478.1

Schwarz criterion

11.02571

Log likelihood

-1070.781

Hannan-Quinn criter.

10.90790

F-statistic

288.4996

Durbin-Watson stat

0.716733

Prob(F-statistic)

0.000000

 

 

 

 

 

 

In some cases, EViews will automatically drop non-varying variables in order to construct the test statistic. These dropped variables will be indicated in this latter estimation output.

Estimation Background

The basic class of models that can be estimated using panel techniques may be written as:

Yit = f(Xit, b) + di + gt + eit

(37.1)

Estimation Background—677

The leading case involves a linear conditional mean specification, so that we have:

 

 

Yit = a + Xit¢b + di + gt + eit

(37.2)

where Yit

is the dependent variable, and Xit is a k -vector of regressors, and eit

are the

error terms for i = 1, 2, º, M cross-sectional units observed for dated periods

 

t

= 1, 2, º, T . The a parameter represents the overall constant in the model, while the

di

and gt

represent cross-section or period specific effects (random or fixed).

 

Note that in contrast to the pool specifications described in Equation (35.2) on page 601, EViews panel equations allow you to specify equations in general form, allowing for nonlinear coefficients mean equations with additive effects. Panel equations do not automatically allow for b coefficients that vary across cross-sections or periods, but you may, of course, create interaction variables that permit such variation.

Other than these differences, the pool equation discussion of “Estimation Background” on page 601 applies to the estimation of panel equations. In particular, the calculation of fixed and random effects, GLS weighting, AR estimation, and coefficient covariances for least squares and instrumental variables is equally applicable in the present setting.

Accordingly, the remainder of this discussion will focus on a brief review of the relevant econometric concepts surrounding GMM estimation of panel equations.

GMM Details

The following is a brief review of GMM estimation and dynamic panel estimators. As always, the discussion is merely an overview. For detailed surveys of the literature, see Wooldridge (2002) and Baltagi (2005).

Background

The basic GMM panel estimators are based on moments of the form,

 

M

M

 

g(b) = Â gi(b)

= Â Zi¢ei(b)

(37.3)

i

= 1

i = 1

 

where Zi is a Ti ¥ p matrix of instruments for cross-section i , and,

 

ei(b)

= (Yi

f(Xit, b))

(37.4)

In some cases we will work symmetrically with moments where the summation is taken over periods t instead of i .

GMM estimation minimizes the quadratic form:

678—Chapter 37. Panel Estimation

 

 

M

¢

 

M

 

 

S(b) =

 

 Zi¢ei(b)

H

 Zi¢ei(b)

(37.5)

 

i = 1

 

i = 1

 

 

=

g(b)¢Hg(b)

 

 

 

 

 

with respect to b for a suitably chosen p ¥ p weighting matrix H .

 

 

 

 

ˆ

 

 

 

 

 

Given estimates of the coefficient vector, b , an estimate of the coefficient covariance matrix

is computed as,

 

 

 

 

 

 

 

 

 

ˆ

(G¢HG)

–1

(G¢HLHG)(G¢HG)

–1

(37.6)

V(b) =

 

 

 

where L is an estimator of E(gi(b)gi(b)¢)

=

E(Zi¢ei(b)ei(b)¢Zi), and G is a Ti ¥ k

derivative matrix given by:

 

 

 

 

 

 

 

 

 

 

 

 

 

M

Z

¢ f

 

 

(37.7)

 

G(b)= –

Â

(b)

 

 

 

 

i

i

 

 

 

 

 

 

i = 1

 

 

 

 

 

In the simple linear case where f(Xit, b) = Xit¢b , we may write the coefficient estimator in closed form as,

ˆ

M

Z

¢

 

M

 

Z

 

 

–1 M

Z

¢

M

Z

 

 

b =

Â

¢X H

 

Â

 

 

¢X

 

Â

¢X

H

Â

¢Y

 

 

i

i

 

 

 

i

i

 

i

i

 

i

 

i

 

 

i = 1

 

 

 

i = 1

 

 

 

 

 

 

i = 1

 

 

 

i = 1

 

 

 

 

= (MZX¢HMZX)–1(MZX¢HMZY)

 

 

 

 

 

 

 

 

 

 

with variance estimator,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ˆ

 

(MZX¢HMZX)

–1

(MZX

¢HLHMZX)(MZX¢HMZX)

–1

 

V(b) =

 

 

for MAB of the general form:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M

 

 

=

 

 

 

M

A

 

 

 

 

 

 

 

 

 

 

 

 

AB

M–1

 

Â

¢B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i

 

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i = 1

 

 

 

 

 

 

 

 

 

 

(37.8)

(37.9)

(37.10)

The basics of GMM estimation involve: (1) specifying the instruments Z , (2) choosing the weighting matrix H , and (3) determining an estimator for L .

It is worth pointing out that the summations here are taken over individuals; we may equivalently write the expressions in terms of summations taken over periods. This symmetry will prove useful in describing some of the GMM specifications that EViews supports.

A wide range of specifications may be viewed as specific cases in the GMM framework. For example, the simple 2SLS estimator, using ordinary estimates of the coefficient covariance, specifies:

Estimation Background—679

 

 

 

 

 

 

ˆ

2

MZZ)

–1

 

 

 

 

 

 

 

 

H = (j

 

 

 

 

 

 

 

 

 

 

 

 

ˆ 2

MZZ

 

 

 

 

 

 

 

 

 

L = j

 

 

 

 

 

 

Substituting, we have the familiar expressions,

 

 

 

 

 

 

ˆ

ˆ 2

MZZ)

–1

MZX)

–1

 

 

ˆ 2

MZZ)

–1

MZY)

b = (MZX¢(j

 

 

 

(MZX¢(j

 

 

= (MZX¢MZZ–1MZX )–1(MZX¢MZZ–1MZY )

 

 

and,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ˆ

 

ˆ 2

(MZX¢MZZ

–1

MZX)

–1

 

 

 

V(b)

= j

 

 

 

 

(37.11)

(37.12)

(37.13)

Standard errors that are robust to conditional or unconditional heteroskedasticity and contemporaneous correlation may be computed by substituting a new expression for L ,

 

–1

 

T

 

ˆ

ˆ

 

 

 

L = T

 

Â

Z

 

¢Z

(37.14)

 

¢e

e

 

 

 

t

t

 

t

t

 

 

 

 

t = 1

 

 

 

 

 

 

so that we have a White cross-section robust coefficient covariance estimator. Additional robust covariance methods are described in detail in “Robust Coefficient Covariances” on page 611.

In addition, EViews supports a variety of weighting matrix choices. All of the choices available for covariance calculation are also available for weight calculations in the standard panel GMM setting: 2SLS, White cross-section, White period, White diagonal, Cross-section SUR (3SLS), Cross-section weights, Period SUR, Period weights. An additional differenced error weighting matrix may be employed when estimating a dynamic panel data specification using GMM.

The formulae for these weights are follow immediately from the choices given in “Robust Coefficient Covariances” on page 611. For example, the Cross-section SUR (3SLS) weighting matrix is computed as:

 

 

 

–1

T

 

ˆ

 

 

–1

H

=

Â

Z

 

(37.15)

T

 

¢Q

M

Z

 

 

 

 

t

 

t

 

 

 

 

 

t = 1

 

 

 

 

 

ˆ

where QM is an estimator of the contemporaneous covariance matrix. Similarly, the White period weights are given by:

 

 

–1

M

 

 

 

 

 

–1

H =

Â

Z

ˆ

ˆ

 

(37.16)

M

 

¢e

e

¢Z

 

 

 

i

i

 

i

i

 

 

 

 

i = 1

 

 

 

 

 

 

These latter GMM weights are associated with specifications that have arbitrary serial correlation and time-varying variances in the disturbances.

680—Chapter 37. Panel Estimation

GLS Specifications

EViews allows you to estimate a GMM specification on GLS transformed data. Note that the moment conditions are modified to reflect the GLS weighting:

 

 

M

M

–1

 

 

g(b)

=

 gi(b)

ˆ

ei(b)

(37.17)

= Â Zi¢Q

 

 

 

i = 1

i = 1

 

 

 

Dynamic Panel Data

 

 

 

 

 

 

Consider the linear dynamic panel data specification given by:

 

 

 

p

 

 

 

 

Yit

=

 rjYit j

+ Xit¢b + di + eit

(37.18)

j = 1

First-differencing this specification eliminates the individual effect and produces an equation of the form:

p

 

DYit = Â rjDYit j + DXit¢b + Deit

(37.19)

j = 1

which may be estimated using GMM techniques.

Efficient GMM estimation of this equation will typically employ a different number of instruments for each period, with the period-specific instruments corresponding to the different numbers of lagged dependent and predetermined variables available at a given period. Thus, along with any strictly exogenous variables, one may use period-specific sets of instruments corresponding to lagged values of the dependent and other predetermined variables.

Consider, for example, the motivation behind the use of the lagged values of the dependent variable as instruments in Equation (37.19). If the innovations in the original equation are i.i.d., then in t = 3 , the first period available for analysis of the specification, it is obvious

that Yi1

is a valid instrument since it is correlated with DYi2 , but uncorrelated with Dei3 .

Similarly, in t = 4 , both Yi2

and Yi1

are potential instruments. Continuing in this vein,

we may form a set of predetermined instruments for individual i

using lags of the depen-

dent variable:

 

 

 

 

 

 

 

 

 

 

 

 

Yi1

0

0

º

º

º

º

0

 

 

 

 

 

Wi

=

 

0

Yi1

Yi2

º º º º 0

(37.20)

 

 

 

º

º

º

º

º

º

º

º

 

 

 

 

0

0

0

º Yi1

Yi2

º YiTi – 2

 

 

 

 

 

 

 

 

 

 

 

 

 

Similar sets of instruments may be formed for each predetermined variables.

Соседние файлы в папке EViews Guides BITCH