
- •Вятский государственный университет
- •А.В. Новиков р.В. Медов Электрические станции
- •1. Виды электростанций и их роль в выработке электроэнергии
- •2. Конденсационные электростанции
- •3. Теплоэлектроцентрали
- •4. Атомные электростанции
- •5. Гидроэлектростанции.
- •6. Роль различных типов электростанций в покрытии графика нагрузки энергосистемы.
- •7. Структура электрической части электростанций.
- •8. Экологические аспекты энергетики
- •8.1. Тепловые электростанции
- •8.2. Атомные электростанции
- •8.3 Гидроэлектростанции
- •9. Схемы электрических соединений
- •9.1. Одна система сборных шин
- •9.2. Две системы сборных шин
- •9.3. Одна система сборных шин с обходной сш
- •9.4. Две системы сборных шин с обходной сш
- •9.5. Схемы многоугольников
- •9.6. Схемы «Полуторная» и 4/3 (четыре – третьих)
- •9.7. Схема с двумя выключателями на одно присоединение
- •9.8. Схемы мостиков
- •9.9. Схемы генераторных распределительных устройств.
- •10. Измерительные трансформаторы на главных схемах электростанций.
- •11. Установка заземляющих ножей
- •12. Высокочастотные заградители
- •Литература
3. Теплоэлектроцентрали
Основное назначение ТЭЦ – выработка тепла для производственных нужд, отопления и горячего водоснабжения. Поэтому они сооружаются вблизи крупных городов с числом жителей более ста тысяч и развитой промышленностью.
В отличие от КЭС, на ТЭЦ не все тепло, произведенное котлом, идет на производство электроэнергии. Частично отработавший пар с температурой 250-300 градусов станция отдает предприятиям, использующим его для производства продукции (например, на шинный завод, производящий автопокрышки).
Другая часть пара с температурой 120-130 градусов направляется в подогреватели сетевой воды или в водогрейные котлы (на рисунке 3.1 не показаны) и используется для отопления и горячего водоснабжения потребителей. Оставшийся пар срабатывается полностью и направляется в конденсатор. Количество выработанной электроэнергии на ТЭЦ находится в прямой зависимости от теплового потребления. Чем больше тепла будет истрачено на промышленные и коммунально-бытовые нужды, тем меньше будет произведено электроэнергии.
Рисунок 3.1
Теплофикационные турбины в режиме теплового потребления работают с наивысшим КПД (до 60%). Высокий КПД ТЭЦ объясняется комплексным использованием пара, уменьшающим количество тепла, отдаваемого через конденсатор в окружающее пространство.
Площадку для строительства ТЭЦ выбирают как можно ближе к потребителю, но с учетом «розы ветров», чтобы выбросы из труб были направлены преимущественно в сторону от города. При этом станция зачастую оказывается вдали от естественных водоемов. В таких случаях применяют оборотную систему водоснабжения, при которой для охлаждения циркуляционной воды используют градирни (см. рисунок 3.1).
Градирня – это пустотелая вытяжная башня высотой до 150 м и диаметром 40 – 70 м, которая создает естественную тягу с направлением воздушного потока снизу вверх. Внутри градирни на высоте 10 – 20 м устанавливают разбрызгивающее устройство. Капли воды летят вниз навстречу воздуху. При этом часть капель испаряется, за счет чего охлаждается вода, поступающая из конденсатора и нагретая в нем. Охлажденная вода собирается внизу в бассейне, откуда подается ЦН обратно в конденсатор. Принципиальная тепловая схема ТЭЦ показана на рисунке 3.2.
Большинство существующих ТЭЦ были построены более 30 лет назад. На них установлены агрегаты мощностью 30 – 60 МВт. Характерной особенностью построения таких станций является наличие в технологической схеме поперечных связей по воде, по пару и по электрической энергии. Принципиальная схема ТЭЦ с поперечными связями показана на рисунке 3.3.
Рисунок 3.2.
ПК – паровой котел, Т – турбина, Г – генератор, К – конденсатор, КН – конденсатный насос, Др – деаэратор, ПН – питательный насос, ЦН – циркуляционный насос, ХВО – химводоочистка,
Гр – градирня, ПСВ – подогреватель сетевой воды.
Вода в котлы поступает из общей системы водоснабжения. Выработанный всеми котлами пар из общего паропровода поступает на турбины. Котлы уступают по надежности турбинам. Чтобы выход из строя одного котла не приводил к остановке турбины, число котлов выбирают обычно на 1 – 2 больше числа генераторов. Генераторы выдают энергию на сборные шины генераторного распределительного устройства. От него питается нагрузка на генераторном напряжении и собственные нужды станции. Избыточная мощность через трансформаторы связи поступает на распределительное устройство высшего напряжения, от которого питаются особо мощные или удаленные потребители, а так же отходят линии связи с системой.
Рисунок 3.3.
К – котел, Т – турбина, Г – генератор, ГРУ – генераторное распределительное устройство, Н – нагрузка, СН – собственные нужды, ТС – трансформатор связи, РУ ВН – распределительное устройство высшего напряжения, С – система.
Особенности ТЭЦ следующие:
Сооружаются вблизи потребителей тепловой и электрической энергии. Работают на привозном топливе.
Значительную часть выработанной электроэнергии отдают близлежащим потребителям на генераторном напряжении.
Имеют относительно высокий КПД (До 60%).
Низко маневренные.
Работают по зависящему от теплового потребления графику выработки электроэнергии.
Современные ТЭЦ имеют мощность 1000 –1500 МВт, на них установлены генераторы мощностью 110 – 250 МВт. Включение таких мощных генераторов на параллельную работу приводит к возрастанию токов короткого замыкания, удорожанию, а иногда и невозможности выбора, оборудования. Поэтому для ТЭЦ с генераторами большой мощности рекомендуется применять блочный принцип построения. В этом случае местная нагрузка питается от комплектного распределительного устройства (КРУ) через реакторную отпайку. Блочный принцип построения может быть применен и для генераторов меньшей мощности (60 – 100 МВт), если нагрузка на генераторном напряжении составляет менее 30% от установленной мощности ТЭЦ. Схема блочной ТЭЦ показана на рисунке 3.4.
Большое количество линий, питающих местную нагрузку, требует строительства отдельного здания для генераторного распределительного устройства (ГРУ). Поэтому при нагрузке на генераторном напряжении более 50% мощности ЭС рекомендуется проектировать ТЭЦ с поперечными связями, т.е. с ГРУ. При нагрузке 30 – 50% рассматривают оба варианта, производят технико-экономическое сравнение и выбирают наиболее экономичный из них.
В нормальном режиме напряжение на шинах ГРУ или КРУ поддерживается путем изменения тока возбуждения генераторов. Во время ремонтов, например дымовой трубы, все генераторы останавливают, и местная нагрузка питается от системы. Тогда регулирование напряжения на шинах ГРУ производится с помощью трансформаторов связи. Для этого трансформаторы связи на ТЭЦ оснащены устройством регулирования напряжения под нагрузкой (РПН).
Рисунок 3.4.
Г – генератор, Р – реактор, СН – собственные нужды, ТС – трансформатор связи, С – система, Н – нагрузка, КРУ – комплектное распределительное устройство, РУ ВН – распределительное устройство высшего напряжения.
Разновидностью ТЭС являются газотурбинные установки (ГТУ) и парогазовые (ПГУ). В настоящее время в России в эксплуатации находится одна ГТУ мощностью 600 МВт и одна ПГУ мощностью 450 МВт. Их отличает высокая экономичность и экологическая чистота, что позволяет предполагать, что в будущем они найдут более широкое распространение.
Как отмечалось ранее, тепловые электростанции являются основой энергетики и в ближайшие годы безусловно сохранят свои лидирующие позиции.
ТЭС европейской части России находятся на значительном удалении от основных источников органического топлива, расположенных за Уралом, работают в основном на газе и мазуте, транспортировка которых требует меньших затрат. Однако запасы органического топлива не беспредельны и поэтому в будущем все большую роль будут играть атомные электростанции.