
- •Демонстрационная презентация курса
- •Лекция 1. Введение в теорию вероятностей
- •Равновозможные исходы
- •Классическое определение вероятности
- •Формулы комбинаторики
- •Выбор без возвращения
- •Выбор без возвращения
- •Статистическое определение
- •Статистическое определение
- •Лекция 2. Основания теории вероятностей
- •Событиями мы будем называть некоторые наборы элементарных исходов, то есть подмножества множества Ω.
- •Элементарные события
- •Комбинации событий
- •Сумма (объединение) событий
- •Противоположное событие
- •Вероятность в дискретном пространстве
- •Несчетное множество исходов
- •Аксиоматическое определение вероятности
- •Лекция 3.
- •Условная вероятность
- •Теорема сложения
- •Теорема умножения для двух событий
- •Теорема (формула полной вероятности)
- •Теорема (формула Байеса)
- •Лекция 4. Схемы испытаний
- •Теорема (формула Бернулли)
- •Предельные теоремы для схемы Бернулли
- •Теорема Пуассона
- •Приближенная формула Пуассона
- •Локальная приближенная формула
- •Свойства функции (x)
- •Интегральная приближенная формула
- •Свойства функции Ф(x)
- •Лекция 5.
- •Дискретные распределения
- •Ряд распределения
- •Биномиальное распределение B(n, p)
- •Пример
- •Распределение Пуассона P
- •Функция распределения
- •Лекция 6.
- •Геометрический смысл функции распределения
- •Равномерное распределение R [a, b]
- •Нормальное распределение N (a, )
- •Нормальное распределение N (a, )
- •Кривые плотностей N(a, σ) с различными а и σ
- •Плотность и функция распределения
- •Многомерные СВ
- •Лекция 7.
- •Математическое ожидание н.сл.в.
- •Математическое ожидание функции случайной величины
- •Дисперсия случайной величины
- •Числовые характеристики
- •Начальные и центральные моменты
- •Лекция 8. Линейная зависимость
- •Коэффициент корреляции
- •Свойства коэффициента корреляции
- •Смысл коэффициента корреляции
- •Уравнение линейной регрессии
- •Формулы уравнения линейной регрессии
- •Лекция 9. Условные распределения
- •Нахождение условной функции распределения
- •Условная плотность
- •Условное математическое ожидание
- •Регрессия
- •Корреляционное отношение
- •Лекция 10. Предельные теоремы
- •Сходимость по вероятности
- •Закон больших чисел (ЗБЧ)
- •Закон больших чисел
- •ЗБЧ в форме Чебышева
- •ЗБЧ в форме Бернулли
- •ЗБЧ в форме Хинчина
- •Центральная предельная теорема (ЦПТ)
- •Центральная предельная теорема для независимых одинаково распределенных сл. в.
- •Зависимость от числа слагаемых
- •Практическое значение ЦПТ
- •Лекция 11. Введение в
- •Основные понятия
- •Простая выборка
- •Эмпирическая функция распределения
- •Свойства эмпирической функции распределения
- •Группировка выборки
- •Параметры группировки
- •Графические характеристики выборки
- •Гистограмма и плотность
- •Лекция 12.
- •Числовые характеристики выборки
- •Способ получения выборочных формул
- •Замечание
- •Выборочное среднее
- •Выборочная дисперсия
- •Выборочный начальный момент порядка l
- •Выборочный центральный момент порядка l
- •Лекция 13. Распределение выборочных характеристик
- •Плотность распределения χ2 при разных k
- •Распределение Стьюдента
- •Плотность распределения Стьюдента
- •Распределение Фишера
- •Теорема Фишера
- •Теорема
- •Лекция 14. Точечное оценивание параметров
- •Точечные оценки
- •Несмещенность
- •Несмещенные оценки в N(a,σ)
- •Состоятельность
- •Оптимальность
- •Нижняя граница дисперсий
- •Эффективность
- •Оценка максимального правдоподобия
- •Метод максимального правдоподобия
- •Метод моментов
- •Лекция 15. Интервальное оценивание параметров
- •Уровень значимости α
- •Схема построения доверительного интервала
- •Доверительный интервал для параметра a распределения N(a, σ)
- •Квантили нормального распределения
- •Доверительный интервал для параметра a (при неизвестном σ) :
- •Доверительный интервал для параметра σ распределения N(a, σ)
- •Асимптотический доверительный интервал
- •Лекция 16. Проверка статистических гипотез
- •Проверка гипотезы
- •Критическая область
- •Если значение статистики попадает критическую область, то H0 отвергается.
- •Ошибка первого рода
- •Ошибка второго рода
- •Мощность критерия
- •Лекция 17. Проверка гипотез о параметрах
- •Общая схема проверки
- •Проверка гипотез о параметрах нормального распределения
- •Гипотеза о дисперсиях.
- •Лекция 18. Проверка гипотез о виде распределения.
- •Применение критерия Колмогорова
- •Правило проверки
- •Критерий согласия Пирсона χ2
- •Статистика критерия Пирсона
- •Правило проверки

Смысл коэффициента корреляции
Коэффициент корреляции есть мера линейной зависимости между ξ, η.
Его модуль указывает на силу линейной связи
(чем ближе к 1, тем сильнее),а знак указывает на направление связи.

Уравнение линейной регрессии
Уравнением линейной регрессии η на ξ называется уравнение
ηˆ = aξ + b, параметры которого минимизируют остаточную дисперсию
S2ост= M (η – ηˆ)2 = M(η – (aξ + b))2.
Смысл. Уравнение линейной регрессии η на ξ выражает линейную зависимость η от ξ.

Формулы уравнения линейной регрессии
) M ( M ).
|
|
|
) |
cov( , ) |
( M ). |
M |
2 |
|
|
|
СФУ Т.В. Крупкина |
64 |

Лекция 9. Условные распределения
Пусть (ξ, η) – двумерная случайная величина. Рассмотрим распределение η при условии, что ξ = x. Оно называется условным.
Определение. Условной функцией распределения случайной величины
ηпри условии, что ξ = x, называется
Fη/ξ = x = P(η < y/ξ = x).

Нахождение условной функции распределения
Условная функция распределения случайной величины η при условии, что ξ = x

Условная плотность
Если условная функция распределения случайной величины η при условии, что ξ = x, непрерывна, то производная от нее называется условной плотностью распределения случайной величины η при условии, что ξ = x.
f / x (y) |
|
f , (x, y) |
. |
|
|
f , (x,v)dv

Условное математическое ожидание
Условным математическим ожиданием
M(η/ξ = x) случайной величины η при
условии, что ξ = x, называется математическое ожидание, найденное с помощью условного закона распределения.
Условная функция распределения, условная плотность, условное математическое ожидание обладают свойствами функции распределения, плотности, математического ожидания соответственно.

Регрессия
Определение. Регрессией η на ξ называется случайная величина r(ξ), равная при каждом x условному математическому ожиданию случайной величины η при условии, что ξ = x.
Определение. Линией регрессии называется линия y = r(x), где
r(x) = M(η/ξ = x).

Корреляционное отношение
Корреляционным отношением η на ξ называется числовая характеристика, равная
2 M (r( )2 M )2
Смысл: корреляционное отношение измеряет силу зависимости η от ξ

Лекция 10. Предельные теоремы
Неравенство Маркова. Для любого ε > 0
Неравенство Чебышева. Для любого ε > 0
P(| | ) M | |k
k
P(| M | ) |
D |
|
|
2 |
|||
|