- •Демонстрационная презентация курса
- •Лекция 1. Введение в теорию вероятностей
- •Равновозможные исходы
- •Классическое определение вероятности
- •Формулы комбинаторики
- •Выбор без возвращения
- •Выбор без возвращения
- •Статистическое определение
- •Статистическое определение
- •Лекция 2. Основания теории вероятностей
- •Событиями мы будем называть некоторые наборы элементарных исходов, то есть подмножества множества Ω.
- •Элементарные события
- •Комбинации событий
- •Сумма (объединение) событий
- •Противоположное событие
- •Вероятность в дискретном пространстве
- •Несчетное множество исходов
- •Аксиоматическое определение вероятности
- •Лекция 3.
- •Условная вероятность
- •Теорема сложения
- •Теорема умножения для двух событий
- •Теорема (формула полной вероятности)
- •Теорема (формула Байеса)
- •Лекция 4. Схемы испытаний
- •Теорема (формула Бернулли)
- •Предельные теоремы для схемы Бернулли
- •Теорема Пуассона
- •Приближенная формула Пуассона
- •Локальная приближенная формула
- •Свойства функции (x)
- •Интегральная приближенная формула
- •Свойства функции Ф(x)
- •Лекция 5.
- •Дискретные распределения
- •Ряд распределения
- •Биномиальное распределение B(n, p)
- •Пример
- •Распределение Пуассона P
- •Функция распределения
- •Лекция 6.
- •Геометрический смысл функции распределения
- •Равномерное распределение R [a, b]
- •Нормальное распределение N (a, )
- •Нормальное распределение N (a, )
- •Кривые плотностей N(a, σ) с различными а и σ
- •Плотность и функция распределения
- •Многомерные СВ
- •Лекция 7.
- •Математическое ожидание н.сл.в.
- •Математическое ожидание функции случайной величины
- •Дисперсия случайной величины
- •Числовые характеристики
- •Начальные и центральные моменты
- •Лекция 8. Линейная зависимость
- •Коэффициент корреляции
- •Свойства коэффициента корреляции
- •Смысл коэффициента корреляции
- •Уравнение линейной регрессии
- •Формулы уравнения линейной регрессии
- •Лекция 9. Условные распределения
- •Нахождение условной функции распределения
- •Условная плотность
- •Условное математическое ожидание
- •Регрессия
- •Корреляционное отношение
- •Лекция 10. Предельные теоремы
- •Сходимость по вероятности
- •Закон больших чисел (ЗБЧ)
- •Закон больших чисел
- •ЗБЧ в форме Чебышева
- •ЗБЧ в форме Бернулли
- •ЗБЧ в форме Хинчина
- •Центральная предельная теорема (ЦПТ)
- •Центральная предельная теорема для независимых одинаково распределенных сл. в.
- •Зависимость от числа слагаемых
- •Практическое значение ЦПТ
- •Лекция 11. Введение в
- •Основные понятия
- •Простая выборка
- •Эмпирическая функция распределения
- •Свойства эмпирической функции распределения
- •Группировка выборки
- •Параметры группировки
- •Графические характеристики выборки
- •Гистограмма и плотность
- •Лекция 12.
- •Числовые характеристики выборки
- •Способ получения выборочных формул
- •Замечание
- •Выборочное среднее
- •Выборочная дисперсия
- •Выборочный начальный момент порядка l
- •Выборочный центральный момент порядка l
- •Лекция 13. Распределение выборочных характеристик
- •Плотность распределения χ2 при разных k
- •Распределение Стьюдента
- •Плотность распределения Стьюдента
- •Распределение Фишера
- •Теорема Фишера
- •Теорема
- •Лекция 14. Точечное оценивание параметров
- •Точечные оценки
- •Несмещенность
- •Несмещенные оценки в N(a,σ)
- •Состоятельность
- •Оптимальность
- •Нижняя граница дисперсий
- •Эффективность
- •Оценка максимального правдоподобия
- •Метод максимального правдоподобия
- •Метод моментов
- •Лекция 15. Интервальное оценивание параметров
- •Уровень значимости α
- •Схема построения доверительного интервала
- •Доверительный интервал для параметра a распределения N(a, σ)
- •Квантили нормального распределения
- •Доверительный интервал для параметра a (при неизвестном σ) :
- •Доверительный интервал для параметра σ распределения N(a, σ)
- •Асимптотический доверительный интервал
- •Лекция 16. Проверка статистических гипотез
- •Проверка гипотезы
- •Критическая область
- •Если значение статистики попадает критическую область, то H0 отвергается.
- •Ошибка первого рода
- •Ошибка второго рода
- •Мощность критерия
- •Лекция 17. Проверка гипотез о параметрах
- •Общая схема проверки
- •Проверка гипотез о параметрах нормального распределения
- •Гипотеза о дисперсиях.
- •Лекция 18. Проверка гипотез о виде распределения.
- •Применение критерия Колмогорова
- •Правило проверки
- •Критерий согласия Пирсона χ2
- •Статистика критерия Пирсона
- •Правило проверки
Применение критерия Колмогорова
При n → ∞, если H0 – верная гипотеза, распределение статистики √n Dn сходится к функции Колмогорова К(t). Функция Колмогорова задается таблично. При практических расчетах значения К(t) можно применять уже при n > 20.
t* находится из таблиц К(t) по заданному α. Например, при α = 0,05 находим, что t* = 1,358.
Правило проверки
Таким образом, при заданном уровне значимости α правило проверки гипотезы H0 при n>20 сводится к следующему:
если значение статистики √n Dn ≥ t*, то H0 отвергают, в противном случае делают вывод, что статистические данные не противоречат гипотезе.
Критерий согласия Пирсона χ2
Критерий применяется к группированной выборке.
Пусть n – объем выборки (n ≥ 50),
k – число интервалов группировки,
ni – число значений, попавших в i –й интервал,
i = 1,…,k, (ni ≥ 5),
pi – теоретическая вероятность попадания одного элемента выборки в i – й интервал,
npi = niТ ( теоретические частоты).
Статистика критерия Пирсона
k |
(n np )2 |
k |
(n n |
Т )2 |
||
T |
i i |
|
i |
i |
. |
|
npi |
|
Т |
||||
i 1 |
i 1 |
|
ni |
|
|
|
Если для оценки параметров используются оценки максимального правдоподобия, то:
k |
(ni npi ) |
2 |
|
T |
|
2 ( ), |
|
npi |
|
||
i 1 |
|
|
Правило проверки
ν = k – r –1, где r – число параметров, оцененных по выборке.
Критическая область имеет вид (t*, +∞), где t*
– квантиль распределения χ2 порядка 1 – α.Если значение статистики T ≥ t*, то H0 отвергают, в противном случае делают вывод, что статистические данные не противоречат гипотезе.
