
- •Введение
- •Понятие об экономико-математических методах и моделях
- •1.1.Определение модели и цели моделирования
- •1.2. Последовательность построения экономико-математической модели
- •1.3. Классификация экономико-математических методов
- •1.4. Классификация экономико-математических моделей
- •1.5. Объекты моделирования
- •1.6. Цель, критерий и ограничения в экономико-математических моделях
- •2. Математические модели рынка
- •2.1. Понятие рыночного равновесия
- •2.2. Паутинообразная модель рынка
- •2.3. Существование и единственность рыночного равновесия
- •2.4. Государственное регулирование рынка. Налоги
- •. Дотации
- •2.6. Фиксированные цены
- •2.7. Оценка прибыли и убытков при государственном регулировании рынка
- •2.8. Поддержание стабильных цен и производственные квоты
- •2.9. Принципы ценообразования в рыночной экономике. Диверсификация цен
- •2.9.1. Диверсификация цен в зависимости от дохода покупателя
- •2.9.2. Диверсификация цен в зависимости от объема потребления
- •2.9.3. Диверсификация цен по категориям товаров
- •Совокупная прибыль
- •2.9.4. Диверсификация цен по времени
- •3. Производственные функции
- •3.1. Виды производственных функций
- •3.2. Функция Кобба-Дугласа
- •3.3. Модель Солоу
- •3.4. Модель Стоуна
- •3.5. Двойственная задача потребительского выбора
- •3.6. Функция спроса Маршалла
- •3.7. Модель общего равновесия Вальраса
- •3.8. Рыночное равновесие в модели Леонтьева
- •3.9. Пример построения производственной функции
- •Значения коэффициентов парной корреляции
- •3.10. Производственные функции и прогнозирование
- •4. Модели оптимального планирования
- •4.1. Оптимизация прибыли предприятия
- •Исходные данные для предельного анализа
- •4.2. Оптимизация прибыли методами математического программирования
- •Исходные данные для решения задачи оптимизации
- •4.3. Оптимизация прибыли при ограничениях на используемые ресурсы
- •Исходные данные по изделиям
- •Результаты расчета Таблица 4.8
- •4.4. Планирование оптимальной мощности строительного предприятия
- •Для решения задачи на пк коэффициенты целевой функции, матрицы ограничений и правые части ограничений необходимо записать в виде симплекс-матрицы (табл.4.10).
- •Оптимальное значение целевой функции – 240,000.
- •4.5. Модели стохастического программирования
- •4.6. Модели оптимального планирования транспортного типа
- •4.7. Решение задач по планированию перевозок
- •4.8. Производственно-транспортные модели
- •4.9. Транспортные модели с промежуточными пунктами
- •4.10. Модели параметрического программирования
- •4.11. Модель распределения инвестиционных ресурсов между строительными организациями, прошедшими конкурсный отбор
- •4.12. Производственно-транспортная задача прикрепления источников теплоснабжения к потребителям продукции
- •5. Матричные игры
- •5.1. Классификация матричных игр
- •5.2. Игры с нулевой суммой
- •5.3. Решение игры в чистых стратегиях
- •5.4. Решение игры в смешанных стратегиях
- •Очевидным следствием из теоремы о минимаксе является соотношение
- •5.5. Игры с ненулевой суммой и кооперативные игры
- •5.6. Введение в теорию игр п лиц
- •5.7. Позиционные игры
- •5.8. Выбор оптимальной стратегии в условиях неопределенности (игры с природой)
- •5.8.1. Специфика ситуации полной неопределенности
- •5.8.2. Критерии выбора оптимальной стратегии
- •5.9. Применение теории матричных игр в управлении
- •5.10. Сведение матричной игры к задаче линейного программирования Рассмотрим игру, платежная матрица которой имеет размерность
- •5.11. Решение игры с применением процессора электронных таблиц
- •5.12. Определение победителя подрядных торгов с применением теории игр
- •6. Имитационное моделирование
- •6.1. Метод Монте-Карло
- •7. Моделирование систем массового обслуживания
- •7.1. Одноканальная модель с пуассоновским входным потоком с экспоненциальным распределением длительности обслуживания
- •7.2. Многоканальная модель с пуассоновским входным потоком и экспоненциальным распределением длительности обслуживания
- •8. Модели оценки эффективности инвестиционных проектов
- •8.1. Расчет абсолютных и относительных показателей эффективности проекта
- •8.2. Применение процессоров электронных таблиц для оценки эффективности инвестиций
- •8.3. Оптимальное планирование портфеля инвестиций
- •8.4. Учет факторов риска при оценке инвестиций
- •8.5. Определение уровня недиверсифицируемого риска методом корреляционно-регрессионного анализа
- •Исходные данные для расчета
- •9. Модели оценки финансового состояния предприятия
- •9.1. Виды моделей
- •9.2. Статическая и динамическая модели оценки финансового
- •Коэффициенты рентабельности
- •Оценка деловой активности
- •Оценка финансовой устойчивости
- •Оценка платежеспособности и ликвидности
- •Рекомендуемые значения оцениваемых показателей
- •Вопросы и задания
- •Заключение
- •Библиографический список
- •Экономико-математические методы и модели
- •394006 Г.Воронеж, ул. 20-летия Октября, 84
1.5. Объекты моделирования
Объектами моделирования в строительстве являются: инвестиционно-строительный комплекс в целом, его отдельные составляющие, например жилищное строительство, предприятия, отдельные подразделения предприятий и производственные процессы в них.
Не всякую экономическую задачу можно представить в виде экономико-математической модели с целью нахождения оптимума. Для этого необходимо наличие определенных условий, допускающих моделирование данной проблемы, а именно:
1) все требования и условия задачи должны быть выражены математически в виде уравнений и неравенств;
2) данная задача должна допускать многовариантность решения (иметь альтернативы);
3) необходимо наличие четкой математической формулировки цели с возможностью получения однозначного ответа, поскольку методы оптимизации (за исключением многокритериальных задач) не допускают формулирования более чем одной цели.
1.6. Цель, критерий и ограничения в экономико-математических моделях
При решении экономических задач мы ставим перед собой определенную цель, которую желаем достичь. Цель - это то, во имя чего осуществляется моделируемый производственный процесс.
Для выбора из множества возможных путей достижения цели наилучшего служит критерий оптимальности, т.е. признак, по которому могут сравниваться и оцениваться варианты достижения цели. Критерий оптимальности характеризует качество решения, эффективность намечаемого пути достижения цели. В качестве критерия оптимальности обычно принимают экономическую величину, экстремальное значение которой определяют в процессе решения задачи. Критерий оптимальности должен иметь стоимостную, натуральную или временную размерность. Критерием оптимальности могут быть: объем строительно-монтажных работ (СМР) в натуральном или в стоимостном выражении, прибыль, приведенные затраты, производительность труда и т.д.
Критерий оптимальности может быть локальным и глобальным. Глобальный критерий оценивает эффективность функционирования системы или организации с учетом согласованных между собой общих интересов системы или организации и внутренних интересов ее структурных подразделений.
Понятие глобального критерия может рассматриваться применительно к народному хозяйству в целом. Возможной формулировкой народно-хозяйственного критерия оптимальности служит интегральная общественная полезность благ и услуг, максимизация валового внутреннего продукта (ВВП).
Для планирования деятельности отдельных отраслей народного хозяйства необходимы локальные критерии оптимальности, отличающиеся от глобального. Для отрасли строительства это может быть максимальный ввод в эксплуатацию объектов и сооружений. Локальный критерий оптимальности конкретизирует требования глобального таким образом, чтобы интересы каждого предприятия и его звеньев совпадали с интересами народного хозяйства в целом.
В свою очередь критерий оптимальности функционирования отрасли, если рассматривать ее как относительно обособленную систему, является глобальным по отношению к локальным критериям функционирования предприятий и организаций отрасли.
Искомыми параметрами являются переменные, обеспечивающие достижение цели при экстремальном значении критерия оптимальности. Такими переменными могут быть:
набор объектов, этапов и комплексов работ, максимизирующий программу работ строительной организации;
распределение объемов выполняемых работ по способам производства, минимизирующее приведенные затраты на их выполнение и т.д.
Математическая интерпретация критерия оптимальности задач в виде функции многих переменных носит название целевой функции. Целевая функция обычно имеет вид
(1.1)
Коэффициенты Cj при искомых переменных Xj представляют собой величину критерия оптимальности в расчете на единицу соответствующей переменной.
Система ограничений задачи представляет собой совокупность равенств или неравенств, с помощью которых устанавливают связь между искомыми переменными и определяют допустимые границы их изменения. Ограничения имеют вид
(1.2)
где Qij – норматив затрат i-го вида ресурса на единицу j-ой переменной;
bi - величина i-го вида ресурса.
Ограничения могут быть по выпускаемым изделиям и потребляемым материалам, основным и оборотным фондам, трудовым ресурсам, способам выполнения работ, срокам и т.д. Строгое равенство используют для реализации ограничений по потребностям, величина которых жестко фиксирована: объемы работ, количество ресурсов и т.д.
Неравенства вида ≤ записывают по лимитированным ресурсам: машинам, рабочим, капитальным вложениям и т.д. Неравенства вида ≥ характеризуют ограничения по нелимитированным ресурсам и определяют минимально необходимый объем работ, минимальный выпуск продукции и т.д.
Если система ограничений содержит равенства и неравенства, то она может оказаться несовместной, т.е. неразрешимой. Несовместность системы ограничений, как правило, может быть установлена только в процессе решения задачи. Потребность в трудовых и материально-технических ресурсах на единицу искомой переменной Xj - Qij задается в виде коэффициентов при переменных в ограничениях.
ЭММ с формально математических позиций представляет собой задачу, в которой необходимо определить значение неизвестных переменных, обращающих в минимум или максимум величину целевой функции при соблюдении ограничений, принятых для решения задачи.
Вопросы и задания
Что такое «экономико-математическая модель»?
Что является объектом моделирования?
Какие ограничения применяются в экономико-математических моделях?
Приведите примеры процессов, для описания которых используется дискретное моделирование.