
Книги / Книга Проектирование ВПОВС (часть 2)
.pdf
1 |
0 |
0 |
x |
11 |
= 1. |
|
|
|
|
|
|
1 |
0 |
0 |
|
|
|
Примечание. Недостающие разряды справа заполняются нулями.
Результат:
x |
0 |
x |
1 |
x |
x |
3 |
x |
4 |
x |
5 |
x |
6 |
x |
7 |
x |
8 |
x |
9 |
x |
x |
11 |
|
|
2 |
|
|
|
|
|
|
|
10 |
|
||||||||||
0. |
1 |
0 |
0 |
1 |
0 |
0 |
|
1 |
0 |
1 |
0 |
1. |
Пример 3.11.
x = 1. 0 1 1 0 1 1 0 0 1 0 1.
Для перевода в ДИЗСС отрицательное число x представляем как x = 1. 0 1 1 0 1 1 0 0 1 0 1
0. 1 0 0 1 0 1 0 0 1 0 1.
1. Первый набор:
x |
i |
x |
i+1 |
x |
i+2 |
|
|
|
|
|
|
|
|
|
|||
1 |
0 |
1 |
x |
0 |
= 0. |
|||
|
|
|
|
|
|
|
|
|
1 |
|
1 |
1 |
|
|
|
2. Второй набор:
|
|
|
|
|
x1 = 1. |
1 |
1 |
|
1 |
||
|
|
|
|
|
|
1 |
0 |
|
1 |
|
3. Третий набор:
|
0 |
1 |
0 |
x |
2 |
= 0. |
|
|
|
|
|
|
|
|
0 |
1 |
0 |
|
|
|
4. |
Четвертый набор: |
|
|
|
||
|
1 |
0 |
1 |
x |
3 |
= 0. |
|
|
|
|
|
|
|
|
0 |
1 |
1 |
|
|
|
5. |
Пятый набор: |
|
|
|
181

1 |
1 |
1 |
|
x |
= 1. |
|||||
|
|
|
|
|
|
|
4 |
|
|
|
1 |
0 |
1 |
|
|
|
|
|
|
||
6. Шестой набор: |
|
|
|
|
|
|
||||
0 |
1 |
0 |
x |
5 |
= 0. |
|||||
|
|
|
|
|
|
|
|
|
|
|
0 |
1 |
0 |
|
|
|
|
|
|
||
7. Седьмой набор: |
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
||||
|
|
|
|
|
x6 = 1. |
|||||
1 |
0 |
0 |
||||||||
|
|
|
|
|
|
|
|
|
|
|
1 |
0 |
0 |
|
|
|
|
|
|
||
8. Восьмой набор: |
|
|
|
|
|
|
||||
0 |
0 |
1 |
x |
|
= 0. |
|
||||
|
|
|
|
|
7 |
|
|
|
|
|
0 |
0 |
1 |
|
|
|
|
|
|
||
9. Девятый набор: |
|
|
|
|
|
|
||||
0 |
1 |
0 |
x |
8 |
= 0. |
|
||||
|
|
|
|
|
|
|
|
|
|
|
0 |
1 |
0 |
|
|
|
|
|
|
||
10. Десятый набор: |
|
|
|
|
|
|
||||
1 |
0 |
1 |
x9 = 1. |
|||||||
1 |
0 |
1 |
|
|
|
|
|
|
11. Одиннадцатый набор:
0 |
1 |
0 |
x |
10 |
= 0. |
|
|
|
|
|
|
0 |
1 |
0 |
|
|
|
12. Двенадцатый набор: |
|
||||
1 |
0 |
0 |
x11 = 1. |
||
1 |
0 |
0 |
|
|
|
182
Результат: x = 0. 1 0 0 1 0 0 1 0 1 0 1
Для построения преобразователя построим полную таблицу истинности
(табл. 3.6) и получим логические выражения для определения искомых переменных.
Таблица 3.6
№ |
|
|
|
|
|
|
|
|
|
|
|
|
|
xi |
xi |
xi 1 |
xi 1 |
xi 2 |
|
xi 2 |
xi |
xi |
xi 1 |
xi 1 |
xi 2 |
xi 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
0 |
0 |
0 |
0 |
0 |
|
0 |
0 |
0 |
0 |
0 |
0 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
1 |
0 |
0 |
0 |
0 |
|
0 |
1 |
0 |
0 |
0 |
0 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
0 |
1 |
0 |
0 |
0 |
|
0 |
0 |
1 |
0 |
0 |
0 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
1 |
1 |
0 |
0 |
0 |
|
0 |
* |
* |
* |
* |
* |
* |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
0 |
0 |
1 |
0 |
0 |
|
0 |
0 |
0 |
1 |
0 |
0 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
1 |
0 |
1 |
0 |
0 |
|
0 |
1 |
0 |
1 |
0 |
0 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
0 |
1 |
1 |
0 |
0 |
|
0 |
0 |
0 |
0 |
1 |
0 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
1 |
1 |
1 |
0 |
0 |
|
0 |
* |
* |
* |
* |
* |
* |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
0 |
0 |
0 |
1 |
0 |
|
0 |
0 |
0 |
0 |
1 |
0 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
1 |
0 |
0 |
1 |
0 |
|
0 |
0 |
0 |
1 |
0 |
0 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
0 |
1 |
0 |
1 |
0 |
|
0 |
0 |
1 |
0 |
1 |
0 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
1 |
1 |
0 |
1 |
0 |
|
0 |
* |
* |
* |
* |
* |
* |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
0 |
0 |
1 |
1 |
0 |
|
0 |
* |
* |
* |
* |
* |
* |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
1 |
0 |
1 |
1 |
0 |
|
0 |
* |
* |
* |
* |
* |
* |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
0 |
1 |
1 |
1 |
0 |
|
0 |
* |
* |
* |
* |
* |
* |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
1 |
1 |
1 |
1 |
0 |
|
0 |
* |
* |
* |
* |
* |
* |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
0 |
0 |
0 |
0 |
1 |
|
0 |
0 |
0 |
0 |
0 |
1 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
1 |
0 |
0 |
0 |
1 |
|
0 |
1 |
0 |
0 |
0 |
1 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
0 |
1 |
0 |
0 |
1 |
|
0 |
0 |
1 |
0 |
0 |
1 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
1 |
1 |
0 |
0 |
1 |
|
0 |
* |
* |
* |
* |
* |
* |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
0 |
0 |
1 |
0 |
1 |
|
0 |
1 |
0 |
0 |
0 |
0 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
1 |
0 |
1 |
0 |
1 |
|
0 |
* |
* |
* |
* |
* |
* |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
0 |
1 |
1 |
0 |
1 |
|
0 |
0 |
0 |
0 |
0 |
0 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
|
|
|
|
|
24 |
1 |
1 |
1 |
0 |
1 |
|
0 |
* |
* |
* |
* |
* |
* |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
0 |
0 |
0 |
1 |
1 |
|
0 |
* |
* |
* |
* |
* |
* |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
1 |
0 |
0 |
1 |
1 |
|
0 |
1 |
0 |
0 |
0 |
0 |
1 |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
0 |
1 |
0 |
1 |
1 |
|
0 |
0 |
1 |
0 |
0 |
0 |
1 |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
1 |
1 |
0 |
1 |
1 |
|
0 |
* |
* |
* |
* |
* |
* |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
0 |
0 |
1 |
1 |
1 |
|
0 |
* |
* |
* |
* |
* |
* |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
1 |
0 |
1 |
1 |
1 |
|
0 |
* |
* |
* |
* |
* |
* |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
0 |
0 |
1 |
1 |
1 |
|
0 |
* |
* |
* |
* |
* |
* |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
1 |
0 |
1 |
1 |
1 |
|
0 |
* |
* |
* |
* |
* |
* |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
0 |
1 |
0 |
0 |
0 |
|
1 |
0 |
0 |
0 |
0 |
0 |
1 |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
1 |
1 |
0 |
0 |
0 |
|
1 |
1 |
0 |
0 |
0 |
0 |
1 |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
0 |
0 |
0 |
0 |
0 |
|
1 |
0 |
1 |
0 |
0 |
0 |
1 |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
1 |
0 |
0 |
0 |
0 |
|
1 |
* |
* |
* |
* |
* |
* |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
0 |
1 |
1 |
0 |
0 |
|
1 |
0 |
0 |
0 |
0 |
1 |
0 |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
1 |
1 |
1 |
0 |
0 |
|
1 |
1 |
0 |
0 |
0 |
|
1 |
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
0 |
0 |
1 |
0 |
0 |
|
1 |
0 |
0 |
0 |
1 |
|
0 |
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
1 |
0 |
1 |
0 |
0 |
|
1 |
* |
* |
* |
* |
|
* |
|
* |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
0 |
1 |
0 |
1 |
0 |
|
1 |
0 |
0 |
0 |
1 |
|
0 |
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
1 |
1 |
0 |
1 |
0 |
|
1 |
0 |
0 |
0 |
0 |
|
1 |
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
0 |
0 |
0 |
1 |
0 |
|
1 |
* |
* |
* |
* |
|
* |
|
* |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
1 |
0 |
0 |
1 |
0 |
|
1 |
* |
* |
* |
* |
|
* |
|
* |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
0 |
1 |
1 |
1 |
0 |
|
1 |
* |
* |
* |
* |
|
* |
|
* |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
1 |
1 |
1 |
1 |
0 |
|
1 |
* |
* |
* |
* |
|
* |
|
* |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
0 |
0 |
1 |
1 |
0 |
|
1 |
* |
* |
* |
* |
|
* |
|
* |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
1 |
0 |
1 |
1 |
0 |
|
1 |
* |
* |
* |
* |
|
* |
|
* |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
0 |
1 |
0 |
0 |
1 |
|
1 |
* |
* |
* |
* |
|
* |
|
* |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
1 |
1 |
0 |
0 |
1 |
|
1 |
* |
* |
* |
* |
|
* |
|
* |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
0 |
0 |
0 |
0 |
1 |
|
1 |
* |
* |
* |
* |
|
* |
|
* |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
1 |
0 |
0 |
0 |
1 |
|
1 |
* |
* |
* |
* |
|
* |
|
* |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
|
|
|
|
|
|
|
53 |
0 |
|
1 |
|
1 |
|
0 |
|
1 |
|
1 |
* |
* |
* |
|
* |
* |
* |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
1 |
|
1 |
|
1 |
|
0 |
|
1 |
|
1 |
* |
* |
* |
|
* |
* |
* |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
0 |
|
0 |
|
1 |
|
0 |
|
1 |
|
1 |
* |
* |
* |
|
* |
* |
* |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
1 |
|
0 |
|
1 |
|
0 |
|
1 |
|
1 |
* |
* |
* |
|
* |
* |
* |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
0 |
|
1 |
|
0 |
|
1 |
|
1 |
|
1 |
* |
* |
* |
|
* |
* |
* |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
1 |
|
1 |
|
0 |
|
1 |
|
1 |
|
1 |
* |
* |
* |
|
* |
* |
* |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
0 |
|
0 |
|
0 |
|
1 |
|
1 |
|
1 |
* |
* |
* |
|
* |
* |
* |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
1 |
|
0 |
|
0 |
|
1 |
|
1 |
|
1 |
* |
* |
* |
|
* |
* |
* |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
0 |
|
1 |
|
1 |
|
1 |
|
1 |
|
1 |
* |
* |
* |
|
* |
* |
* |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
1 |
|
1 |
|
1 |
|
1 |
|
1 |
|
1 |
* |
* |
* |
|
* |
* |
* |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
0 |
|
0 |
|
1 |
|
1 |
|
1 |
|
1 |
* |
* |
* |
|
* |
* |
* |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
1 |
|
0 |
|
1 |
|
1 |
|
1 |
|
1 |
* |
* |
* |
|
* |
* |
* |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ниже |
|
приведены |
карты |
Карно |
|
для |
определения |
минимальных |
|
|
|
|
|
x |
|
|
x |
|
|
x |
|
|
x |
|
|
x |
|
|
||
|
|
|
|
|
i |
|
|
i |
|
i 1 |
|
|
|
i 2 |
|
||||||
логических выражений для определения переменных |
|
|
|
, |
|
, |
|
, |
i 1 |
, |
|
, |
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i 2 |
. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I – карты Карно (от 6 переменных) для функции |
x |
|
|
: |
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
i |
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
Здесь I – первый контур, которому соответствует первая конъюнкция, а |
|||||||||||||||||||
II – второй контур, которому соответствует вторая конъюнкция в логическом |
|||||||||||||||||||||
|
|
|
x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
тождестве переменной |
i . Аналогично для других переменных. |
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
185




