
- •Основы построения телекоммуникационных систем и сетей
- •Предисловие
- •Введение
- •Лекция 1
- •Основные понятия и определения
- •Основные понятия и определения. Классификация систем электросвязи
- •Вопросы и задачи для самоконтроля
- •Лекция 2 Первичные сигналы электросвязи Первичные сигналы электросвязи и их физические характеристики
- •Сигналы передачи данных и телеграфии
- •Вопросы и задачи для самоконтроля
- •Лекция 3 Каналы передачи Каналы передачи, их классификация и основные характеристики
- •Типовые каналы передачи
- •Вопросы и задачи для самоконтроля
- •Лекция 4 Двусторонние каналы Построение двусторонних каналов
- •Развязывающие устройства, требования к ним и классификация
- •Анализ резисторной дифференциальной системы
- •Лекция 5 Трансформаторная дифференциальная система Анализ трансформаторной дифференциальной системы
- •Определение условия непропускания тдс от полюсов 4-4 к полюсам 2-2
- •Определение входных сопротивлений тдс
- •Определение затуханий уравновешенной тдс в направлениях передачи
- •Анализ неуравновешенной трансформаторной дифференциальной системы
- •Сравнение трансформаторной и резисторной дифференциальных систем
- •Лекция 6 Двусторонний канал как замкнутая система Устойчивость двусторонних каналов
- •Устойчивость телефонного канала
- •Искажения от обратной связи
- •Вопросы и задачи для самоконтроля к лекциям 4-6
- •Лекция 7 Общие принципы построения многоканальных систем передачи
- •Обобщенная структурная схема многоканальной системы передачи
- •Методы разделения канальных сигналов
- •Взаимные помехи между каналами
- •Вопросы и задачи для самоконтроля
- •Лекция 8 Принципы формирования канальных сигналов в системе передачи с частотным разделением каналов
- •Формирование канальных сигналов
- •Способы передачи амплитудно-модулированных сигналов
- •Квадратурные искажения при передаче амплитудно-модулированных сигналов
- •Лекция 9 Методы формирования одной боковой полосы. Искажения в каналах и трактах сп с чрк
- •Фильтровой метод формирования обп
- •Многократное преобразование частоты
- •Фазоразностный метод формирования обп
- •Искажения в каналах и трактах систем передачи с частотным разделением каналов
- •Вопросы, задачи и упражнения для самоконтроля к лекциям 8и9
- •Лекция 10 Принципы построения и особенности работы систем передачи с временным разделением каналов Структурная схема системы передачи с временным разделением каналов
- •Формирование канальных сигналов в системах передачи с временным разделением каналов
- •Формирование канальных сигналов с помощью амплитудно-импульсной модуляции.
- •Формирование канальных сигналов с помощью широтно-импульсной модуляции.
- •Формирование канальных сигналов на основе фазоимпульсной модуляции.
- •Выбор вида импульсной модуляции для построения систем передачи с временным разделением каналов
- •Помехоустойчивость амплитудно-импульсной модуляции.
- •Выбор вида импульсной модуляции для построения систем передачи с временным разделением каналов
- •Помехоустойчивость амплитудно-импульсной модуляции.
- •Переходные влияния между каналами систем передачи с временным разделением каналов
- •Оценка переходных помех 1-го рода.
- •Оценка переходных помех 2-го рода.
- •Обобщенная структурная схема системы передачи с временным разделением каналов на основе фазоимпульсной модуляции
- •Вопросы, задачи и упражнения для самоконтроля
- •Лекция 11 Общие принципы формирования и передачи сигналов в цифровых системах передачи Постановка задачи
- •Квантование сигналов по уровню
- •Оценка шумов квантования Оценка шумов при равномерном квантовании.
- •Гармонический сигнал.
- •Речевой сигнал.
- •Речевой сигнал, поступающий от разных источников.
- •Многоканальный групповой телефонный сигнал.
- •Телевизионный сигнал.
- •Оценка шумов квантования при неравномерном квантовании.
- •Кодирование квантованных сигналов
- •Обобщенная структурная схема цифровой системы передачи
- •Виды синхронизации в цифровых системах передачи
- •Принципы регенерации цифровых сигналов
- •Линейное кодирование в цсп
- •Лекция 12
- •Разностные методы кодирования.
- •Иерархия цифровых систем передачи
- •Дифференциальная импульсно-кодовая модуляция
- •Дифференциальная импульсно-кодовая модуляция как система с линейным предсказанием.
- •Дельта-модуляция
- •Иерархия цифровых систем передачи на основе импульсно-кодовой модуляции
- •Объединение цифровых потоков в плезиохронной цифровой иерархии
- •Объединение цифровых потоков в синхронной цифровой иерархии
- •Вопросы и задачи для самоконтроля к лекциям 11 и 12
- •Лекция 13 Общие принципы построения волоконно-оптических систем передачи Краткий исторический очерк
- •Обобщенная структурная схема волоконно-оптической системы передачи
- •Классификация волоконно-оптических систем передачи. Способы организации двусторонней связи на основе волоконно-оптических систем передачи. Способы уплотнения оптических кабелей
- •Лекция 14 Основные узлы оптических систем передачи. Оптический линейный тракт Оптические передатчики
- •Требования к источникам оптического излучения: их параметры и характеристики
- •Оптические приемники
- •Лавинные фотодиоды (лфд).
- •Шумы приемников оптического излучения.
- •Модуляторы оптической несущей
- •Виды модуляции оптической несущей.
- •Обобщенная структурная схема оптического линейного тракта
- •Оптические усилители
- •1. Усилители Фабри - Перо.
- •2. Усилители на волокне, использующие бриллюэновское расстояние.
- •3. Усилители на волокне, использующие рамановское расстояние,
- •4. Полупроводниковые лазерные усилители (пплу)
- •5. Усилители на примесном волокне
- •Вопросы и задачи для самоконтроля к лекциям 13 и 14
- •Лекция 15 Общие принципы и особенности построения систем радиосвязи Основные понятия и определения. Классификация диапазонов радиочастот и радиоволн. Структура радиосистем передачи.
- •Общие принципы организации радиосвязи. Классификация радиосистем передачи
- •Особенности распространения радиоволн метрового -миллиметрового диапазонов
- •Антенно-фидерные устройства
- •Лекция 16 Построение радиорелейных и спутниковых линий передачи Основные понятия и определения. Классификация радиорелейных линий передачи. Принципы многоствольной передачи
- •Виды модуляции, применяемые в радиорелейных и спутниковых системах передачи
- •Вопросы для самоконтроля
- •Лекция 17 Особенности построения оборудования радиорелейных и спутниковых систем передачи Принципы построения оборудования радиорелейных линий передачи прямой видимости
- •Особенности построения тропосферных радиорелейных линий
- •Передача сигналов телевизионного вещания по радиорелейным линиям
- •Спутниковые системы передачи
- •Много станционный доступ с разделением сигналов по форме.
- •Принципы построения систем спутникового телевещания - ств
- •Вопросы для самоконтроля
- •Лекция 18 Общие принципы построения телекоммуникационных сетей Основные понятия и определения
- •Назначение и состав сетей электросвязи
- •Методы коммутации в сетях электросвязи
- •Структура сетей электросвязи
- •Принципы построения взаимоувязанной сети связи Российской Федерации
- •Многоуровневый подход. Протоколы, интерфейс, стек протоколов
- •Элементы теории телетрафика
- •Вопросы для самоконтроля
- •Лекция 19 Особенности построения вторичных телекоммуникационных сетей Состав и назначение сетей телефонной связи
- •Структура вторичных цифровых сетей общего пользования.
- •Состав и назначение телеграфных сетей
- •Сети передачи данных
- •Информационно-вычислительные сети. Сети эвм
- •Телематические службы
- •Цифровые сети интегрального обслуживания
- •Вопросы для самоконтроля
- •Лекция 20 Принципы построения сетей и систем радиосвязи Основные понятия и определения
- •Основы построения систем сотовой связи
- •Основы транкинговых систем радиосвязи
- •Основы построения систем беспроводного абонентского радиодоступа
- •Технико-экономические аспекты системы беспроводного абонентского радиодоступа
- •Вопросы для самоконтроля,
- •Основы построения телекоммуникационных систем и сетей
Структура сетей электросвязи
Понятие структуры сети раскрывает схему связей и взаимодействия ее элементов. При рассмотрении структуры сети выделяют следующие аспекты её описания: физический, определяющий состав и связи элементов и логический, отображающий взаимодействие элементов в процессе функционирования сети.
Физическая структура сети - это схема связей физических элементов сети: узлов коммутации (УК), оконечных пунктов (ОП) -станций и линий передачи в их взаимном расположении с характеристиками передачи и распределения сообщений.
Логическая структура сети определяет принципы установления связей, алгоритмы организации процессов и управления ими, логику функционирования программных средств.
Топологическая структура сети или просто топология - это обобщенная геометрическая модель физической структуры сети.
Более конкретный состав аппаратно-программных средств и схема их связей называется конфигурацией сети.
В дальнейшем, если не оговорено особо, под термином «структура» понимается топологическая структура.
Под архитектурой сети понимается совокупность физической, логической и функциональной структуры.
В качестве математической модели топологической структуры сети широко используется модель в виде графа (рис. 3).
Рис. 3. Граф структуры сети
Обычно вершины графа обозначаются цифрами (1, 2, 3, 4) и сопоставляются с УК и/или ОП, а ребра графа - буквами (а, Ь, с, d, e) и соответствуют каналам связи. В символической форме графы обозначаются G (А, В), где знак G выражает логическое содержание
данного понятия; А = {а1,а2, ....., aN} - множество вершин графа; В = {bij} - множество ребер между вершинами а\ и as. Вершины графа называются смежными, если они соединены ребром. Ребра могут быть ориентированными или направленными (ребро е) и неориентированными или ненаправленными (ребра а, Ь, с, о). Ориентированные ребра соответствуют односторонним каналам, а неориентированные-двусторонним каналам.
Различают три типа графов: 1) ориентированные графы, все ребра которых ориентированные; 2) неориентированные графы, не содержащие ориентированных ребер; 3) графы смежного типа, в которых имеются как ориентированные, так и неориентированные ребра. Каждому ребру может быть приписан некоторый «вес» -число или совокупность чисел, характеризующих какие-либо свойства данного ребра. В качестве веса принимаются, например, длина канала, пропускная способность, скорость передачи информации, число стандартных каналов, надежность, стоимость и т. д. Вершинам графа также могут быть приписаны веса.
Число входящих или исходящих (инцидентных) ребер, называют рангом узла r(ai), где i - номер узла. На рис. 3: r(a1) = 2, r(а2) = 3. Узел ранга 1 является тупиковым, так как через него не могут проходить никакие пути.
Путь
из узла
а, в
узел aj
- это
упорядоченный
набор
ребер,
начинающихся
в узле
аi,
и
заканчивающихся
в узле
aj.
Для пути
конец каждого
предыдущего
ребра
совпадает
с началом
последующего ребра.
Путь
должен
быть
самонепересекающимся,
т.е.
не
проходящим
дважды
через
один и
тот же
узел.
Для
графа (см.
рис. 3)
между
вершинами
1 и 3
существуют
три
пути:
ab,
cd,
aed.
Множество
путей
между
этими
вершинами
= ab
и cd
и aed.
Пути,
как и
ребра,
могут
быть
направленными
и
ненаправленными.
Рангом
пути
r
()
называется
число
ребер,
входящих
в данный
путь. Минимальный
ранг
пути
равен
1, например
r
(
)
= 1, а
максимальный
- равен
N - 1, где
N - число
вершин
графа,
в этом
случае путь
проходит
через
все
вершины.
Путь, начинающийся и заканчивающийся в одной и той же вершине, называется контуром (циклом).
Связностью h называется минимальное число независимых путей, между всеми парами вершин. Для графа (см. рис. 3) h = 2.
Основные топологии телекоммуникационных сетей. Выбор конкретной топологии сети влияет не только на ее физическую структуру, но и существенно определяет все основные показатели сети.
В одних случаях топология задается заранее, в других - определяется на разных стадиях проектирования. Разработанная или выбранная топология сети оценивается по различным критериям: надежности, экономичности и т. д. Рассмотрим разновидности топологических структур, получивших наибольшее распространение в телекоммуникационных сетях.
1. Древовидная топология предполагает между каждой парой узлов только один путь, т.е. связность сети h = 1. На рис. 4 показаны разновидности древовидной топологии.
2. Сетевидная топология, в которой каждый узел является смежным только с небольшим числом других узлов. Связность такой сети h > 1. На рис. 5 изображены представители сетевидной топологии.
3. Полносвязная топология, в которой узлы соединены по принципу «каждый с каждым». На рис. 6 изображена подобная топология.
Если N
- число
узлов,
то число
ребер
равно
,
ранг
узла
r= N -1. Без нарушения связности можно исключить N - 2 ребер.
Топология сети оказывает значительное влияние на основные показатели сети, особенно на надежность и живучесть. Чем выше связность сети, тем она более живуча и надежна. Наибольшей
связностью обладает полносвязная сеть, но для ее реализации требуется максимальное число каналов и, следовательно, сеть имеет высокую стоимость.
Рис. 4. Разновидности древовидной топологии: а -дерево; б-звезда; б -линейная (шина); г -снежинка; <Э -узловая с иерархией узлов
Рис. 5. Разновидности сетевидной топологии: а - петлевая (кольцевая); б- радиально-петлевая; в - сотовая; г - решетка; д - двойная решетка
Рис. 6. Полносвязная топология
Топология реальной сети обычно строится по иерархическому принципу: крупные узлы соединяются по принципу «каждый с каждым», а на низших уровнях используются простые топологии -дерево, шина, звезда, кольцо и т. д.