Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
125
Добавлен:
01.06.2015
Размер:
1.19 Mб
Скачать

37

Механика сплошных сред

Лекция 7

7. Элементы механики сплошных сред

7.1. Упругие и пластические деформации

Под действием приложенных сил тела изменяют свою форму и объем, т. е. деформируются.

Для твердых тел различают деформации: упругие и пластические.

Упругими называют деформации, которые исчезают после прекращения действия сил, а тела восстанавливают свою форму и объем.

Пластическими называют деформации, которые сохраняются после прекращения действия сил, а тела не восстанавливают свою первоначальную форму и объем.

Пластическая деформация возникает при холодной обработке металлов: штамповке, ковке и т. д.

Деформация будет упругой или пластической зависит не только от свойств материала тела, но и от величины приложенных сил.

Тела, которые под действием любых сил испытывают только упругие деформации, называют идеально упругими.

Для таких тел существует однозначная зависимость между действующими силами и вызываемыми ими упругими деформациями.

Мы ограничимся упругими деформациями, которые подчиняются закону Гука.

Все твердые тела можно разделить на изотропные и анизотропные.

Изотропными называют тела, физические свойства которых по всем направлениям одинаковы.

Анизотропными называют тела, физические свойства которых различны по разным направлениям.

Приведенные определения являются относительными, так как реальные тела могут вести себя как изотропные по отношению к одним свойствам и как анизотропные – к другим.

Например, кристаллы кубической системы ведут себя как изотропные, если в них распространяется свет, но они анизотропны, если рассматривать их упругие свойства.

В дальнейшем ограничимся исследованием изотропных тел.

Наиболее широкое распространение в природе имеют металлы с поликристаллической структурой.

Такие металлы состоят из множества мельчайших произвольно ориентированных кристаллов.

В результате пластической деформации хаотичность в ориентации кристаллов может нарушиться.

После прекращения действия сил, вещество будет анизотропным, что наблюдается, например, при вытягивании и кручении проволоки.

Силу, отнесенную к единице площади поверхности, на которую они действуют, называют механическим напряжением n.

Если напряжение не превосходит предела упругости, то деформация будет упругой.

Предельные напряжения, приложенные к телу, после действия, которых оно еще сохраняет свои упругие свойства, называют пределом упругости.

Различают напряжения сжатия, растяжения, изгиба, кручения и т. д.

Если под действием сил, приложенных к телу (стержню), оно растягивается, то возникающие напряжения называют натяжением

. (7.1)

Если стержень сжать, то возникающие напряжения называют давлением:

. (7.2)

Следовательно,

Т =  Р. (7.3)

Если – длина недеформированного стержня, то после приложения силы он получает удлинение .

Тогда длина стержня

. (7.4)

Отношение к, называют относительным удлинением, т. е.

. (7.5)

На основании опытов, Гуком установлен закон: в пределах упругости напряжение (давление) пропорционально относительному удлинению (сжатию), т. е.

(7.6)

или

, (7.7)

где Е – модуль Юнга.

Соотношения (7.6) и (7.7) справедливы для любого твердого тела, но до определенного предела.

Рис. 7.1

На рис. 7.1 приведен график зависимости удлинения от величины приложенной силы.

До точки А (предел упругости) после прекращения действия силы длина стержня возвращается к первоначальной (область упругой деформации).

За пределами упругости деформация становится частично или полностью необратимой (пластические деформации). Для большинства твердых тел линейность сохраняется почти до предела упругости. Если тело продолжать растягивать, то оно разрушится.

Максимальную силу, которую нужно приложить к телу, не разрушая его, называют пределом прочности (т. Б, рис. 7.1).

Рассмотрим произвольную сплошную среду. Пусть она разделена на части 1 и 2 вдоль поверхности А–а–Б–б (рис. 7.2).

Если тело деформировано, тогда его части взаимодействуют между собой по поверхности раздела, вдоль которой они граничат.

Для определения возникающих напряжений кроме сил, действующих в сечении А–а–Б–б, нужно знать, как эти силы распределены по сечению.

Рис. 7.2

Обозначим через dF силу, с которой тело 2 действует на тело 1 на бесконечно малой площадке dS. Тогда напряжение в соответствующей точке на границе сечения тела 1

, (7.8)

где – единичный вектор нормали к площадке dS.

Рис. 7.3

Напряжение -n в той же точке на границе сечения тела 2, такое же по величине, по противоположное по направлению, т. е.

. (7.9)

Для определения механического напряжения в среде, на противоположно ориентированной площадке, в какой-либо ее точке, достаточно задать напряжения на трех взаимно перпендикулярных площадках: Sx, Sy, S–, проходящих через эту точку, например, точка 0 (рис. 7.3).

Это положение справедливо для покоящейся среды или движущейся с произвольным ускорением.

В этом случае

, (7.10)

где (8.11)

S – площадь грани АВС; n – внешняя нормаль к ней.

Следовательно, напряжение в каждой точке упруго деформированного тела можно характеризовать тремя векторами или девятью их проекциями на оси координат Х, У,Z:

(7.12)

которые называют тензором упругих напряжений.