Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
163
Добавлен:
01.06.2015
Размер:
541.7 Кб
Скачать

1.4. Графическое изображение электрических полей.

а б

Рис. 1.4

Рис. 1.5

Зная вектор напряженности электростатического поля в каждой его точке, можно представить это поле наглядно с помощью силовых линий напряженности (линий вектора ). Силовые линии напряженности проводят так, чтобы касательная к ним в каждой точке совпадала с направлением вектора напряженности(рис. 1.4,а).

Число линий, пронизывающих единичную площадку dS, перпендикулярную к ним, проводят пропорционально модулю вектора (рис. 1.4,б).

Силовым линиям приписывают направление, совпадающее с направлением вектора . Полученная картина распределения линий напряженности позволяет судить о конфигурации данного электрического поля в разных его точках. Силовые линии начинаются на положительных зарядах и оканчиваются на отрицательных зарядах. На рис. 1.5 приведены линии напряженности точечных зарядов (рис. 1.5, а, б); системы двух разноименных зарядов (рис. 1.5, в)  пример неоднородного электростатического поля и двух параллельных разноименно заряженных плоскостей (рис. 1.5, г)  пример однородного электрического поля.

1.5. Распределение зарядов

В некоторых случаях для упрощения математических расчетов истинное распределение точечных дискретных зарядов удобно заменить фиктивным непрерывным распределением. При переходе к непрерывному распределению зарядов используют понятие о плотности зарядов  линейной , поверхностной  и объемной , т. е.

(1.12)

где dq  заряд, распределенный соответственно по элементу длины , элементу поверхностиdS и элементу объема dV.

С учетом этих распределений формула (1.11) может быть записана в другой форме. Например, если заряд распределен по объему, то вместо qi нужно использовать dq = dV, а символ суммы заменить интегралом, тогда

. (1.13)

1.6. Электрический диполь

Для объяснения явлений, связанных с зарядами в физике используется понятие электрического диполя.

Систему двух равных по величине разноименных точечных зарядов, расстояние между которыми много меньше расстояния до исследуемых точек пространства, называют электрическим диполем. Согласно определению диполя +q=q= q.

Рис. 1.6

Прямую, соединяющую разноименные заряды (полюса), называют осью диполя; точку 0  центром диполя (рис. 1.6). Электрический диполь характеризуется плечом диполя: вектором , направленным от отрицательного заряда к положительному. Основной характеристикой диполя являетсяэлектрический дипольный момент = q. (1.14)

По абсолютной величине

р = q. (1.15)

В СИ электрический дипольный момент измеряется в кулонах умноженных на метр ( Клм).

Рассчитаем потенциал и напряженность электрического поля диполя, считая его точечным, если  r.

Потенциал электрического поля, созданного системой точечных зарядов в произвольной точке, характеризуемой радиусвектором , запишем в виде:

где r1r2  r2, r1  r2  r =, так как  r;   угол между радиус-векторами и (рис. 1.6). С учетом этого получим

. (1.16)

Используя формулу, связывающую градиент потенциала с напряженностью, найдем напряженность, создаваемую электрическим полем диполя. Разложим вектор электрического поля диполя на две взаимно перпендикулярные составляющие, т. е. (рис. 1. 6).

Первая их них определяется движением точки, характеризуемой радиусвектором (при фиксированном значении угла), т. е. значение Е  найдем дифференцированием (1.81) по r, т. е.

. (1.17)

Вторая составляющая определяется движением точки, связанным с изменением угла  (при фиксированном r), т. е. Е найдем дифференцированием (1.16) по : , (1.18)

где ,d= rd.

Результирующая напряженность Е2 = Е2 + Е2 или после подстановки . (1.19)

Замечание: При  = 90о , (1.20)

т. е. напряженность в точке на прямой проходящей через центр диполя (т. О) и перпендикулярно оси диполя.

При  = 0о , (1.21)

т. е. в точке на продолжении прямой, совпадающей с осью диполя.

Анализ формул (1.19), (1.20), (1.21) показывает, что напряженность электрического поля диполя убывает с расстоянием обратно пропорционально r3, т. е. быстрее, чем для точечного заряда (обратно пропорционально r2 ).