Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
84
Добавлен:
01.06.2015
Размер:
823.3 Кб
Скачать

16

Волновая оптика

­­­­­­­­­­­­­­­­­­­­­­

Лекция 6

9.6. Двойное лучепреломление

При падении естественного луча света под определенным углом на анизотропный кристалл возникают две световые волны, которые различа­ются своими волновыми поверхностями. Эти волны называют обыкновенной и необыкновенной. У обыкновенной волны волновая поверхность  сфера, у необыкно­венной  эллипсоид вращения вокруг оптической оси кристалла.

Оптической осью называют направление в кристалле, при повороте вокруг которого анизотропных свойств в нем не наблюдается.

Рис. 9.14

Существует большая группа одноосных кристаллов, например исландский шпат (кальцит СаСО3), и двухосных кристаллов: турмалин, кварц и др., у которых две оптические оси. Кристаллы характеризуются

Рис. 9.15

главным сечением  плоскостью, проходящей через оптическую ось и падающий световой луч. В главном сеченииволновые поверхности обыкновенного и необыкновенного лучей образуют окружность и эллипс соответственно. Для обыкновенной волны кристалл является изотропным, так как она распространяется по всем направлениям с одной и той же скоростью v0. Если свет распространяется вдоль оптической оси АА, то необыкновенная волна имеет такую же скорость vе = v0, что и обыкновенная волна. При распространении света в направлении, перпендикулярном оптической оси, скорость необыкновенной волны больше, чем скорость обыкновенной (vе > v0). Такие кристаллы называют оптически отрицательными (например, исландский шпат). Если же vе < v0, то кристаллы называют оптически положительными (рис. 9.14, а, б).

1. Пусть параллельный пучок естественного света падает нормально на поверхность кристалла, оптическая ось АА которого составляет угол  с направлением падающего пучка света (рис. 9.15).

Как только плоский фронт падающей волны достигает поверхности кристалла МN, все точки ее становятся источниками двух типов вторичных световых волн  обыкновенной (о) и необыкновенной (е). Колебания вектора в обыкновенной волне происходят перпендикулярно плоскости рис. 9.15 (перпендикулярно плоскости главного сечения), а колебания вектора в необыкновенной волне происходят параллельно плоскости главного сечения (рис. 9.15). Угол  между лучами обыкновенной и необыкновенной волн определяется отношением ve/vo. Когда говорят о скорости распространения света в среде, то имеют в виду скорость распространения волнового

фронта, т. е. фазовую скорость. Вектор этой скорости в каждой точке перпендикулярен к поверхности фронта. В оптике рассматривается еще и лучевая скорость, характеризующая распространение световой энергии. Лучевая скорость обыкновенной волны совпадает с фазовой скоростью в одноосном кристалле и в любой изотропной среде.

Рис. 9.16

Для необыкновенной волны эти скорости совпадают только при распространении света вдоль оптической оси либо перпендикулярно к ней, а в остальных случаях не совпадают.

2. Пусть плоская волна естественного света падает нормально на поверхность кристалла, у которого оптическая ось АА перпендикулярна к его поверхности (рис. 9.16).

При падении света параллельно оптической оси кристалла скорости распространения обыкновенной и необыкновенной волны равны (vе = v0). Фронты волн совпадают, и двойного лучепреломления не происходит.

Рис. 9.17

3. Пусть плоская волна естественного света падает нормально на поверхность кристалла, у которого оптическая ось АА параллельна его поверхности (рис. 9.17). В этом случае лучи обыкновенной и необыкновенной волн не разделяются, но скорость распространения необыкновенной волны больше скорости распространения обыкновенной волны

vе > v0; n0 > ne.

При прохождении обоими лучами толщины кристалла d между ними возникает оптическая разность хода  = d(n0  ne).