
- •Предисловие
- •Структура книги
- •Глава 1. Начинаем
- •1.1. Решение задачи
- •1.2. Программа на языке C++
- •1.2.1. Порядок выполнения инструкций
- •1.3. Директивы препроцессора
- •1.4. Немного о комментариях
- •1.5. Первый взгляд на ввод/вывод
- •1.5.1. Файловый ввод/вывод
- •Глава 2. Краткий обзор С++
- •2.1. Встроенный тип данных “массив”
- •2.2. Динамическое выделение памяти и указатели
- •2.3. Объектный подход
- •2.4. Объектно-ориентированный подход
- •2.5. Использование шаблонов
- •2.6. Использование исключений
- •2.7. Использование пространства имен
- •2.8. Стандартный массив – это вектор
- •Глава 3. Типы данных С++
- •3.1. Литералы
- •3.2. Переменные
- •3.2.1. Что такое переменная
- •3.2.2. Имя переменной
- •3.2.3. Определение объекта
- •3.3. Указатели
- •3.4. Строковые типы
- •3.4.1. Встроенный строковый тип
- •3.4.2. Класс string
- •3.5. Спецификатор const
- •3.6. Ссылочный тип
- •3.7. Тип bool
- •3.8. Перечисления
- •3.9. Тип “массив”
- •3.9.1. Многомерные массивы
- •3.9.2. Взаимосвязь массивов и указателей
- •3.10. Класс vector
- •3.13. Спецификатор volatile
- •3.14. Класс pair
- •3.15. Типы классов
- •Глава 4. Выражения
- •4.1. Что такое выражение?
- •4.3. Операции сравнения и логические операции
- •4.4. Операции присваивания
- •4.5. Операции инкремента и декремента
- •4.6. Операции с комплексными числами
- •4.7. Условное выражение
- •4.8. Оператор sizeof
- •4.9. Операторы new и delete
- •4.10. Оператор “запятая”
- •4.11. Побитовые операторы
- •4.12. Класс bitset
- •4.13. Приоритеты
- •4.14. Преобразования типов
- •4.14.1. Неявное преобразование типов
- •4.14.2. Арифметические преобразования типов
- •4.14.3. Явное преобразование типов
- •4.14.4. Устаревшая форма явного преобразования
- •4.15. Пример: реализация класса Stack
- •Глава 5. Инструкции
- •5.1. Простые и составные инструкции
- •5.2. Инструкции объявления
- •5.3. Инструкция if
- •5.4. Инструкция switch
- •5.5. Инструкция цикла for
- •5.6. Инструкция while
- •5.8. Инструкция do while
- •5.8. Инструкция break
- •5.9. Инструкция continue
- •5.10. Инструкция goto
- •5.11. Пример связанного списка
- •5.11.1. Обобщенный список
- •Глава 6. Абстрактные контейнерные типы
- •6.1. Система текстового поиска
- •6.2. Вектор или список?
- •6.3. Как растет вектор?
- •6.4. Как определить последовательный контейнер?
- •6.5. Итераторы
- •6.6. Операции с последовательными контейнерами
- •6.6.1. Удаление
- •6.6.2. Присваивание и обмен
- •6.6.3. Обобщенные алгоритмы
- •6.7. Читаем текстовый файл
- •6.8. Выделяем слова в строке
- •6.9. Обрабатываем знаки препинания
- •6.10. Приводим слова к стандартной форме
- •6.11. Дополнительные операции со строками
- •6.12. Строим отображение позиций слов
- •6.12.2. Поиск и извлечение элемента отображения
- •6.12.3. Навигация по элементам отображения
- •6.12.4. Словарь
- •6.12.5. Удаление элементов map
- •6.13. Построение набора стоп-слов
- •6.13.2. Поиск элемента
- •6.13.3. Навигация по множеству
- •6.14. Окончательная программа
- •6.15. Контейнеры multimap и multiset
- •6.16. Стек
- •6.17. Очередь и очередь с приоритетами
- •6.18. Вернемся в классу iStack
- •Глава 7. Функции
- •7.1. Введение
- •7.2. Прототип функции
- •7.2.1. Тип возвращаемого функцией значения
- •7.2.2. Список параметров функции
- •7.2.3. Проверка типов формальных параметров
- •7.3. Передача аргументов
- •7.3.1. Параметры-ссылки
- •7.3.2. Параметры-ссылки и параметры-указатели
- •7.3.3. Параметры-массивы
- •7.3.5. Значения параметров по умолчанию
- •7.3.6. Многоточие
- •7.4. Возврат значения
- •7.5. Рекурсия
- •7.6. Встроенные функции
- •7.8.1. Класс для обработки параметров командной строки
- •7.9. Указатели на функции
- •7.9.1. Тип указателя на функцию
- •7.9.2. Инициализация и присваивание
- •7.9.3. Вызов
- •7.9.4. Массивы указателей на функции
- •7.9.5. Параметры и тип возврата
- •Глава 8. Область видимости и время жизни
- •8.1. Область видимости
- •8.1.1. Локальная область видимости
- •8.2. Глобальные объекты и функции
- •8.2.1. Объявления и определения
- •8.2.2. Сопоставление объявлений в разных файлах
- •8.2.3. Несколько слов о заголовочных файлах
- •8.3.1. Автоматические объекты
- •8.3.2. Регистровые автоматические объекты
- •8.3.3. Статические локальные объекты
- •8.4. Динамически размещаемые объекты
- •8.4.3. Динамическое создание и уничтожение массивов
- •8.5.1. Определения пространства имен
- •8.5.2. Оператор разрешения области видимости
- •8.5.3. Вложенные пространства имен
- •8.5.4. Определение члена пространства имен
- •8.5.6. Безымянные пространства имен
- •8.6.1. Псевдонимы пространства имен
- •8.6.2. Using-объявления
- •8.6.3. Using-директивы
- •8.6.4. Стандартное пространство имен std
- •Глава 9. Перегруженные функции
- •9.1. Объявления перегруженных функций
- •9.1.1. Зачем нужно перегружать имя функции
- •9.1.2. Как перегрузить имя функции
- •9.1.3. Когда не надо перегружать имя функции
- •9.2. Три шага разрешения перегрузки
- •9.3.1. Подробнее о точном соответствии
- •9.3.2. Подробнее о расширении типов
- •9.3.3. Подробнее о стандартном преобразовании
- •9.3.4. Ссылки
- •9.4. Детали разрешения перегрузки функций
- •9.4.1. Функции-кандидаты
- •9.4.2. Устоявшие функции
- •9.4.3. Наилучшая из устоявших функция
- •9.4.4. Аргументы со значениями по умолчанию
- •Глава 10. Шаблоны функций
- •10.1. Определение шаблона функции
- •10.2. Конкретизация шаблона функции
- •10.5.1. Модель компиляции с включением
- •10.5.2. Модель компиляции с разделением
- •10.5.3. Явные объявления конкретизации
- •10.11. Пример шаблона функции
- •Глава 11. Обработка исключений
- •11.1. Возбуждение исключения
- •11.2. try-блок
- •11.3. Перехват исключений
- •11.3.1. Объекты-исключения
- •11.3.2. Раскрутка стека
- •11.3.3. Повторное возбуждение исключения
- •11.3.4. Перехват всех исключений
- •11.4. Спецификации исключений
- •11.4.1. Спецификации исключений и указатели на функции
- •11.5. Исключения и вопросы проектирования
- •Глава 12. Обобщенные алгоритмы
- •12.1. Краткий обзор
- •12.2. Использование обобщенных алгоритмов
- •12.3. Объекты-функции
- •12.3.1. Предопределенные объекты-функции
- •12.3.3. Сравнительные объекты-функции
- •12.3.4. Логические объекты-функции
- •12.3.5. Адаптеры функций для объектов-функций
- •12.3.6. Реализация объекта-функции
- •12.4. Еще раз об итераторах
- •12.4.1. Итераторы вставки
- •12.4.2. Обратные итераторы
- •12.4.3. Потоковые итераторы
- •12.4.4. Итератор istream_iterator
- •12.4.5. Итератор ostream_iterator
- •12.4.6. Пять категорий итераторов
- •12.5.1. Алгоритмы поиска
- •12.5.2. Алгоритмы сортировки и упорядочения
- •12.5.3. Алгоритмы удаления и подстановки
- •12.5.4. Алгоритмы перестановки
- •12.5.5. Численные алгоритмы
- •12.5.6. Алгоритмы генерирования и модификации
- •12.5.8. Алгоритмы работы с множествами
- •12.5.9. Алгоритмы работы с хипом
- •12.6.1. Операция list_merge()
- •12.6.2. Операция list::remove()
- •12.6.3. Операция list::remove_if()
- •12.6.5. Операция list::sort()
- •12.6.6. Операция list::splice()
- •12.6.7. Операция list::unique()
- •Глава 13. Классы
- •13.1. Определение класса
- •13.1.1. Данные-члены
- •13.1.2. Функции-члены
- •13.1.3. Доступ к членам
- •13.1.4. Друзья
- •13.1.5. Объявление и определение класса
- •13.3. Функции-члены класса
- •13.3.1. Когда использовать встроенные функции-члены
- •13.3.2. Доступ к членам класса
- •13.3.3. Закрытые и открытые функции-члены
- •13.3.4. Специальные функции-члены
- •13.3.5. Функции-члены со спецификаторами const и volatile
- •13.3.6. Объявление mutable
- •13.4. Неявный указатель this
- •13.4.1. Когда использовать указатель this
- •13.5. Статические члены класса
- •13.5.1. Статические функции-члены
- •13.6. Указатель на член класса
- •13.6.1. Тип члена класса
- •13.6.2. Работа с указателями на члены класса
- •13.6.3. Указатели на статические члены класса
- •13.7. Объединение – класс, экономящий память
- •13.8. Битовое поле – член, экономящий память
- •13.9.1. Разрешение имен в области видимости класса
- •Глава 14. Инициализация, присваивание и уничтожение класса
- •14.1. Инициализация класса
- •14.2. Конструктор класса
- •14.2.1. Конструктор по умолчанию
- •14.2.2. Ограничение прав на создание объекта
- •14.2.3. Копирующий конструктор
- •14.3. Деструктор класса
- •14.3.1. Явный вызов деструктора
- •14.3.2. Опасность увеличения размера программы
- •14.4. Массивы и векторы объектов
- •14.4.2. Вектор объектов
- •14.5. Список инициализации членов
- •14.6.1. Инициализация члена, являющегося объектом класса
- •Глава 15. Перегруженные операторы и определенные пользователем преобразования
- •15.1. Перегрузка операторов
- •15.1.1. Члены и не члены класса
- •15.1.2. Имена перегруженных операторов
- •15.1.3. Разработка перегруженных операторов
- •15.2. Друзья
- •15.3. Оператор =
- •15.4. Оператор взятия индекса
- •15.5. Оператор вызова функции
- •15.6. Оператор “стрелка”
- •15.7. Операторы инкремента и декремента
- •15.8. Операторы new и delete
- •15.8.1. Операторы new[ ] и delete [ ]
- •15.8.2. Оператор размещения new() и оператор delete()
- •15.9. Определенные пользователем преобразования
- •15.9.1. Конвертеры
- •15.9.2. Конструктор как конвертер
- •15.10.1. Еще раз о разрешении перегрузки функций
- •15.10.2. Функции-кандидаты
- •15.11.1. Объявления перегруженных функций-членов
- •15.11.2. Функции-кандидаты
- •15.11.3. Устоявшие функции
- •15.12.1. Операторные функции-кандидаты
- •15.12.2. Устоявшие функции
- •15.12.3. Неоднозначность
- •Глава 16. Шаблоны классов
- •16.1. Определение шаблона класса
- •16.1.1. Определения шаблонов классов Queue и QueueItem
- •16.2. Конкретизация шаблона класса
- •16.2.1. Аргументы шаблона для параметров-констант
- •16.3. Функции-члены шаблонов классов
- •16.3.1. Функции-члены шаблонов Queue и QueueItem
- •16.4. Объявления друзей в шаблонах классов
- •16.4.1. Объявления друзей в шаблонах Queue и QueueItem
- •16.5. Статические члены шаблонов класса
- •16.6. Вложенные типы шаблонов классов
- •16.7. Шаблоны-члены
- •16.8.2. Модель компиляции с разделением
- •16.8.3. Явные объявления конкретизации
- •16.12. Пространства имен и шаблоны классов
- •16.13. Шаблон класса Array
- •Глава 17. Наследование и подтипизация классов
- •17.1. Определение иерархии классов
- •17.1.1. Объектно-ориентированное проектирование
- •17.2. Идентификация членов иерархии
- •17.2.1. Определение базового класса
- •17.2.3. Резюме
- •17.3. Доступ к членам базового класса
- •17.4. Конструирование базового и производного классов
- •17.4.1. Конструктор базового класса
- •17.4.2. Конструктор производного класса
- •17.4.3. Альтернативная иерархия классов
- •17.4.4. Отложенное обнаружение ошибок
- •17.4.5. Деструкторы
- •17.5.1. Виртуальный ввод/вывод
- •17.5.2. Чисто виртуальные функции
- •17.5.3. Статический вызов виртуальной функции
- •17.5.4. Виртуальные функции и аргументы по умолчанию
- •17.5.5. Виртуальные деструкторы
- •17.5.6. Виртуальная функция eval()
- •17.5.7. Почти виртуальный оператор new
- •17.5.8. Виртуальные функции, конструкторы и деструкторы
- •17.7. Управляющий класс UserQuery
- •17.7.1. Определение класса UserQuery
- •17.8. Соберем все вместе
- •Глава 18. Множественное и виртуальное наследование
- •18.1. Готовим сцену
- •18.2. Множественное наследование
- •18.3. Открытое, закрытое и защищенное наследование
- •18.3.1. Наследование и композиция
- •18.3.2. Открытие отдельных членов
- •18.3.3. Защищенное наследование
- •18.3.4. Композиция объектов
- •18.4. Область видимости класса и наследование
- •18.5.1. Объявление виртуального базового класса
- •18.5.2. Специальная семантика инициализации
- •18.5.3. Порядок вызова конструкторов и деструкторов
- •18.5.4. Видимость членов виртуального базового класса
- •18.6.2. Порождение класса отсортированного массива
- •18.6.3. Класс массива с множественным наследованием
- •19.1. Идентификация типов во время выполнения
- •19.1.1. Оператор dynamic_cast
- •19.1.2. Оператор typeid
- •19.1.3. Класс type_info
- •19.2. Исключения и наследование
- •19.2.1. Исключения, определенные как иерархии классов
- •19.2.2. Возбуждение исключения типа класса
- •19.2.4. Объекты-исключения и виртуальные функции
- •19.2.5. Раскрутка стека и вызов деструкторов
- •19.2.6. Спецификации исключений
- •19.2.7. Конструкторы и функциональные try-блоки
- •19.3.1. Функции-кандидаты
- •19.3.3. Наилучшая из устоявших функций
- •Глава 20. Библиотека IOSTREAM
- •20.1. Оператор вывода <<
- •20.2. Ввод
- •20.2.1. Строковый ввод
- •20.3. Дополнительные операторы ввода/вывода
- •20.4. Перегрузка оператора вывода
- •20.5. Перегрузка оператора ввода
- •20.6. Файловый ввод/вывод
- •20.7. Состояния потока
- •20.8. Строковые потоки
- •20.9. Состояние формата
- •20.10. Сильно типизированная библиотека
- •Приложение
- •Глава 21. Обобщенные алгоритмы в алфавитном порядке
- •accumulate()
- •adjacent_difference()
- •adjacent_find()
- •binary_search()
- •copy()
- •copy_backward()
- •count_if()
- •equal()
- •equal_range()
- •fill()
- •find()
- •find_if()
- •find_end()
- •find_first_of()
- •generate()
- •generate_n()
- •includes()
- •inplace_merge()
- •iter_swap()
- •lexicographical_compare()
- •max_element()
- •merge()
- •mismatch()
- •next_permutation()
- •nth_element()
- •partial_sort()
- •partial_sort_copy()
- •partial_sum()
- •partition()
- •prev_permutation()
- •random_shuffle()
- •remove()
- •remove_copy()
- •remove_if()
- •remove_copy_if()
- •replace()
- •replace_copy()
- •replace_if()
- •replace_copy_if()
- •reverse_copy()
- •rotate()
- •search_n()
- •set_intersection()
- •set_union()
- •sort()
- •stable_partition()
- •swap()
- •swap_ranges()
- •transform()
- •unique_copy()
- •upper_bound()
- •Алгоритмы для работы с хипом
- •make_heap()
- •pop_heap()
- •push_heap()
- •sort_heap()

С++ для начинающих |
555 |
определено. Вы согласны с такой критикой? Следует ли оставить применение обобщенных алгоритмов только наиболее квалифицированным специалистам? Может быть, нужно запретить использование потенциально опасных конструкций, таких, как обобщенные алгоритмы, указатели и явные приведения типов?
12.2. Использование обобщенных алгоритмов
Допустим, мы задумали написать книжку для детей и хотим понять, какой словарный состав наиболее подходит для такой цели. Чтобы ответить на этот вопрос, нужно прочитать несколько детских книг, сохранить текст в отдельных векторах строк (см. раздел 6.7) и подвергнуть его следующей обработке:
1.Создать копию каждого вектора.
2.Слить все векторы в один.
3.Отсортировать его в алфавитном порядке.
4.Удалить все дубликаты.
5.Снова отсортировать, но уже по длине слов.
6.Подсчитать число слов, длина которых больше шести знаков (предполагается, что длина – это некоторая мера сложности, по крайней мере, в терминах словаря).
7.Удалить семантически нейтральные слова (например, союзы and (и), if (если), or (или), but (но) и т.д.).
8.Напечатать получившийся вектор.
На первый взгляд, задача на целую главу. Но с помощью обобщенных алгоритмов мы решим ее в рамках одного подраздела.
Аргументом нашей функции является вектор из векторов строк. Мы принимаем указатель
#include <vector> #include <string>
typedef vector<string, allocator> textwords;
void process_vocab( vector<textwords, allocator> *pvec )
{
if ( ! pvec ) {
// выдать предупредительное сообщение return;
}
// ...
на него, проверяя, не является ли он нулевым:
}
Нужно создать один вектор, включающий все элементы исходных векторов. Это делается с помощью обобщенного алгоритма copy() (для его использования необходимо включить заголовочные файлы algorithm и iterator):

С++ для начинающих |
556 |
#include <algorithm> #include <iterator>
void process_vocab( vector<textwords, allocator> *pvec )
{
// ...
vector< string > texts;
vector<textwords, allocator>::iterator iter = pvec->begin(); for ( ; iter != pvec->end(); ++iter )
copy( (*iter).begin(), (*iter).end(), back_inserter( texts ));
// ...
}
Первыми двумя аргументами алгоритма copy() являются итераторы, ограничивающие диапазон подлежащих копированию элементов. Третий аргумент – это итератор, указывающий на место, куда надо копировать элементы. back_inserter называется адаптером итератора; он позволяет вставлять элементы в конец вектора, переданного ему в качестве аргумента. (Подробнее мы рассмотрим адаптеры итераторов в разделе
12.4.).
Алгоритм unique() удаляет из контейнера дубликаты, расположенные рядом. Если дана последовательность 01123211, то результатом будет 012321, а не 0123. Чтобы получить вторую последовательность, необходимо сначала отсортировать вектор с помощью алгоритма sort(); тогда из последовательности 01111223 получится 0123. (Хотя на самом деле получится 01231223.)
unique() не изменяет размер контейнера. Вместо этого каждый уникальный элемент помещается в очередную свободную позицию, начиная с первой. В нашем примере физический результат – это последовательность 01231223; остаток 1223 – это, так сказать, “отходы” алгоритма. unique() возвращает итератор, указывающий на начало этого остатка. Как правило, этот итератор затем передается алгоритму erase() для удаления ненужных элементов. (Поскольку встроенный массив не поддерживает операции erase(), то семейство алгоритмов unique() в меньшей степени подходит для
void process_vocab( vector<textwords, allocator> *pvec )
{
//...
//отсортировать вектор texts
sort( texts.begin(), texts.end() );
// удалить дубликаты
vector<string, allocator>::iterator it; it = unique( texts.begin(), texts.end() ); texts.erase( it, texts.end() );
// ...
работы с ним.) Вот соответствующий фрагмент функции:
}
Ниже приведен результат печати вектора texts, объединяющего два небольших текстовых файла, после применения sort(), но до применения unique():

С++ для начинающих |
557 |
a a a a alice alive almost
alternately ancient and and and and and and and as asks at at beautiful becomes bird bird blows blue bounded but by calling coat
daddy daddy daddy dark darkened darkening distant each either emma eternity falls fear fiery fiery flight flowing for grow hair hair has he heaven,
held her her her her him him home
houses i immeasurable immensity in in in in inexpressibly is is is it it it its
journeying lands leave leave life like long looks magical mean more night, no not not not
now now of of on one one one
passion puts quite red rises row same says she she shush shyly sight sky so so
star star still stone such tell tells tells that that the the the the the the
the there there thing through time to to
to to trees unravel untamed wanting watch what when wind with with you you you you
your your
После применения unique() и последующего вызова erase() вектор texts выглядит следующим образом:
a alice alive almost alternately ancient and as asks at beautiful becomes bird blows blue bounded but by calling coat daddy dark
darkened darkening distant each either emma eternity falls fear fiery flight flowing for grow hair has
he heaven, held her him home houses i
immeasurable immensity in inexpressibly is it its journeying lands leave life like long looks magical mean
more night, no not now of on one
passion puts quite red rises row same says she shush shyly sight sky so star still stone such tell tells that the there thing
through time to trees unravel untamed wanting watch what when wind with you your
Следующая наша задача – отсортировать строки по длине. Для этого мы воспользуемся не алгоритмом sort(), а алгоритмом stable_sort(), который сохраняет относительные положения равных элементов. В результате для элементов равной длины сохраняется алфавитный порядок. Для сортировки по длине мы применим собственную операцию
bool less_than( const string & s1, const string & s2 )
{
return s1.size() < s1.size();
}
void process_vocab( vector<textwords, allocator> *pvec )
{
//...
//отсортировать элементы вектора texts по длине,
//сохранив также прежний порядок
stable_sort( texts.begin(), texts.end(), less_than );
// ...
сравнения “меньше”. Один из возможных способов таков:
}

С++ для начинающих |
558 |
Нужный результат при этом достигается, но эффективность существенно ниже, чем хотелось бы. less_than() реализована в виде одной инструкции. Обычно она вызывается как встроенная (inline) функция. Но, передавая указатель на нее, мы не даем компилятору сделать ее встроенной. Способ, позволяющий добиться этого, –применение
//объект-функция - операция реализована с помощью перегрузки
//оператора operator()
class LessThan { public:
bool operator()( const string & s1, const string & s2 ) { return s1.size() < s2.size(); }
объекта-функции:
};
Объект-функция – это класс, в котором перегружен оператор вызова operator(). В теле этого оператора и реализуется логика функции, в данном случае сравнение “меньше”. Определение оператора вызова выглядит странно из-за двух пар скобок. Запись
operator()
говорит компилятору, что мы перегружаем оператор вызова. Вторая пара скобок
( const string & s1, const string & s2 )
задает передаваемые ему формальные параметры. Если сравнить это определение с предыдущим определением функции less_than(), мы увидим, что, за исключением замены less_than на operator(), они совпадают.
Объект-функция определяется так же, как обычный объект класса (правда, в данном случае нам не понадобился конструктор: нет членов, подлежащих инициализации):
LessThan lt;
Для вызова экземпляра перегруженного оператора мы применяем оператор вызова к
string st1( "shakespeare" ); string st2( "marlowe" );
// вызывается lt.operator()( st1, st2 );
нашему объекту класса, передавая необходимые аргументы. Например:
bool is_shakespeare_less = lt( st1, st2 );
Ниже показана исправленная функция process_vocab(), в которой алгоритму stable_sort() передается безымянный объект-функция LessThan():

С++ для начинающих |
559 |
void process_vocab( vector<textwords, allocator> *pvec )
{
// ...
stable_sort( texts.begin(), texts.end(), LessThan() );
// ...
}
Внутри stable_sort() перегруженный оператор вызова подставляется в текст программы как встроенная функция. (В качестве третьего аргумента stable_sort() может принимать как указатель на функцию less_than(), так и объект класса LessThan, поскольку аргументом является параметр-тип шаблона. Подробнее об объектах-функциях мы расскажем в разделе 12.3.)
Вот результат применения stable_sort() к вектору texts:
a i
as at by he in is it no
of on so to and but for has
her him its not now one red row
she sky the you asks bird blue coat dark each emma fear grow hair held home life like long mean more puts same says star such tell that time what when wind
with your alice alive blows daddy falls fiery lands leave looks quite rises shush shyly sight still stone tells there thing trees watch almost
either flight houses night, ancient becomes bounded calling distant flowing heaven, magical passion through unravel untamed
wanting darkened eternity beautiful darkening immensity journeying alternately immeasurable inexpressibly
Подсчитать число слов, длина которых больше шести символов, можно с помощью обобщенного алгоритма count_if() и еще одного объекта-функции – GreaterThan. Этот объект чуть сложнее, так как позволяет пользователю задать размер, с которым производится сравнение. Мы сохраняем размер в члене класса и инициализируем его с
#include <iostream>
class GreaterThan { public:
GreaterThan( int size = 6 ) : _size( size ){} int size() { return _size; }
bool operator()( const string & s1 ) { return s1.size() > 6; }
private:
int _size;
помощью конструктора (по умолчанию – значением 6):
};
Использовать его можно так:

С++ для начинающих |
560 |
void process_vocab( vector<textwords, allocator> *pvec )
{
//...
//подсчитать число строк, длина которых больше 6
int cnt = count_if( texts.begin(), texts.end(), GreaterThan() );
cout << "Number of words greater than length six are "
<<cnt << endl;
//...
}
Этот фрагмент программы выводит такую строку:
Number of words greater than length six are 22
Алгоритм remove() ведет себя аналогично unique(): он тоже не изменяет размер контейнера, а просто разделяет элементы на те, что следует оставить (копируя их по очереди в начало контейнера), и те, что следует удалить (перемещая их в конец контейнера). Вот как можно воспользоваться им для исключения из коллекции слов,
void process_vocab( vector<textwords, allocator> *pvec )
{
// ...
static string rw[] = { "and", "if", "or", "but", "the" }; vector< string > remove_words( rw, rw+5 );
vector< string >::iterator it2 = remove_words.begin();
for ( ; it2 != remove_words.end(); ++it2 ) {
// просто для демонстрации другой формы count()
int cnt = count( texts.begin(), texts.end(), *it2 ); cout << cnt << " instances removed: "
<< (*it2) << endl;
texts.erase( remove(texts.begin(),texts.end(),*it2 ), texts.end()
);
}
// ...
которые мы не хотим сохранять:
}
Результат применения remove():
1 instances removed: and
0 instances removed: if
0 instances removed: or
1 instances removed: but
1 instances removed: the

С++ для начинающих |
561 |
Теперь нам нужно распечатать содержимое вектора. Можно обойти все элементы и вывести каждый по очереди, но, поскольку при этом обобщенные алгоритмы не используются, мы считаем такое решение неподходящим. Вместо этого проиллюстрируем работу алгоритма for_each() для вывода всех элементов вектора. for_each() применяет указатель на функцию или объект-функцию к каждому элементу контейнера из диапазона, ограниченного парой итераторов. В нашем случае объект-функция
class PrintElem { public:
PrintElem( int lineLen = 8 )
: _line_length( lineLen ), _cnt( 0 )
{}
void operator()( const string &elem )
{
++_cnt;
if ( _cnt % _line_length == 0 ) { cout << '\n'; }
cout << elem << " ";
}
private:
int _line_length; int _cnt;
PrintElem копирует один элемент в стандартный вывод:
void process_vocab( vector<textwords, allocator> *pvec )
{
// ...
for_each( texts.begin(), texts.end(), PrintElem() );
};
}
Вот и все. Мы получили законченную программу, для чего пришлось лишь последовательно записать обращения к нескольким обобщенным алгоритмам. Для удобства мы приводим ниже полный листинг вместе с функцией main() для ее тестирования (здесь используются специальные типы итераторов, которые будут обсуждаться только в разделе 12.4). Мы привели текст реально исполнявшегося кода, который не полностью удовлетворяет стандарту C++. В частности, в нашем распоряжении были лишь устаревшие реализации алгоритмов count() и count_if(), которые не возвращают результат, а требуют передачи дополнительного аргумента для вычисленного значения. Кроме того, библиотека iostream отражает предшествующую принятию стандарта реализацию, в которой требуется заголовочный файл iostream.h.

С++ для начинающих |
562 |
#include <vector> #include <string> #include <algorithm> #include <iterator>
// предшествующий принятию стандарта синтаксис <iostream> #include <iostream.h>
class GreaterThan { public:
GreaterThan( int size = 6 ) : _size( sz ){} int size() { return _size; }
bool operator()(const string &s1)
{ return s1.size() > _size; }
private:
int _size;
};
class PrintElem { public:
PrintElem( int lineLen = 8 )
: _line_length( lineLen ), _cnt( 0 )
{}
void operator()( const string &elem )
{
++_cnt;
if ( _cnt % _line_length == 0 ) { cout << '\n'; }
cout << elem << " ";
}
private:
int _line_length; int _cnt;
};

public: |
|
bool operator()( const string & s1, |
|
const string & s2 ) |
563 |
С++ для{ returnначинающихs1.size() < s2.size(); } |
|
}; |
|
typedef vector<string, allocator> textwords; |
|
void process_vocab( vector<textwords, allocator> *pvec ) |
|
{ |
|
if ( ! pvec ) { |
|
// вывести предупредительное сообщение |
|
return; |
|
} |
|
vector< string, allocator > texts; |
|
vector<textwords, allocator>::iterator iter; |
|
for ( iter = pvec->begin() ; iter != pvec->end(); ++iter ) |
|
copy( (*iter).begin(), (*iter).end(), |
|
back_inserter( texts )); |
|
// отсортировать вектор texts |
|
sort( texts.begin(), texts.end() ); |
|
// теперь посмотрим, что получилось |
|
for_each( texts.begin(), texts.end(), PrintElem() ); |
|
cout << "\n\n"; // разделить части выведенного текста |
|
// удалить дубликаты |
|
vector<string, allocator>::iterator it; |
|
it = unique( texts.begin(), texts.end() ); |
|
texts.erase( it, texts.end() ); |
|
// посмотрим, что осталось |
|
for_each( texts.begin(), texts.end(), PrintElem() ); |
|
cout << "\n\n"; |
|
//отсортировать элементы
//stable_sort сохраняет относительный порядок равных элементов
stable_sort( texts.begin(), texts.end(), LessThan() ); for_each( texts.begin(), texts.end(), PrintElem() );
cout << "\n\n";
//подсчитать число строк, длина которых больше 6 int cnt = 0;
//устаревшая форма count - в стандарте используется другая count_if( texts.begin(), texts.end(), GreaterThan(), cnt );
cout << "Number of words greater than length six are " << cnt << endl;
static string rw[] = { "and", "if", "or", "but", "the" }; vector<string,allocator> remove_words( rw, rw+5 );
vector<string, allocator>::iterator it2 = remove_words.begin();
for ( ; it2 != remove_words.end(); ++it2 )
{
int cnt = 0;
// устаревшая форма count - в стандарте используется другая count( texts.begin(), texts.end(), *it2, cnt );
cout << |
cnt |
<< |
" instances removed: " |
<< |
(*it2) |
<< |
endl; |
texts.erase(
remove(texts.begin(),texts.end(),*it2),
texts.end()
);
}
cout << "\n\n";
for each( texts.begin(), texts.end(), PrintElem() );