
- •Предисловие
- •Структура книги
- •Глава 1. Начинаем
- •1.1. Решение задачи
- •1.2. Программа на языке C++
- •1.2.1. Порядок выполнения инструкций
- •1.3. Директивы препроцессора
- •1.4. Немного о комментариях
- •1.5. Первый взгляд на ввод/вывод
- •1.5.1. Файловый ввод/вывод
- •Глава 2. Краткий обзор С++
- •2.1. Встроенный тип данных “массив”
- •2.2. Динамическое выделение памяти и указатели
- •2.3. Объектный подход
- •2.4. Объектно-ориентированный подход
- •2.5. Использование шаблонов
- •2.6. Использование исключений
- •2.7. Использование пространства имен
- •2.8. Стандартный массив – это вектор
- •Глава 3. Типы данных С++
- •3.1. Литералы
- •3.2. Переменные
- •3.2.1. Что такое переменная
- •3.2.2. Имя переменной
- •3.2.3. Определение объекта
- •3.3. Указатели
- •3.4. Строковые типы
- •3.4.1. Встроенный строковый тип
- •3.4.2. Класс string
- •3.5. Спецификатор const
- •3.6. Ссылочный тип
- •3.7. Тип bool
- •3.8. Перечисления
- •3.9. Тип “массив”
- •3.9.1. Многомерные массивы
- •3.9.2. Взаимосвязь массивов и указателей
- •3.10. Класс vector
- •3.13. Спецификатор volatile
- •3.14. Класс pair
- •3.15. Типы классов
- •Глава 4. Выражения
- •4.1. Что такое выражение?
- •4.3. Операции сравнения и логические операции
- •4.4. Операции присваивания
- •4.5. Операции инкремента и декремента
- •4.6. Операции с комплексными числами
- •4.7. Условное выражение
- •4.8. Оператор sizeof
- •4.9. Операторы new и delete
- •4.10. Оператор “запятая”
- •4.11. Побитовые операторы
- •4.12. Класс bitset
- •4.13. Приоритеты
- •4.14. Преобразования типов
- •4.14.1. Неявное преобразование типов
- •4.14.2. Арифметические преобразования типов
- •4.14.3. Явное преобразование типов
- •4.14.4. Устаревшая форма явного преобразования
- •4.15. Пример: реализация класса Stack
- •Глава 5. Инструкции
- •5.1. Простые и составные инструкции
- •5.2. Инструкции объявления
- •5.3. Инструкция if
- •5.4. Инструкция switch
- •5.5. Инструкция цикла for
- •5.6. Инструкция while
- •5.8. Инструкция do while
- •5.8. Инструкция break
- •5.9. Инструкция continue
- •5.10. Инструкция goto
- •5.11. Пример связанного списка
- •5.11.1. Обобщенный список
- •Глава 6. Абстрактные контейнерные типы
- •6.1. Система текстового поиска
- •6.2. Вектор или список?
- •6.3. Как растет вектор?
- •6.4. Как определить последовательный контейнер?
- •6.5. Итераторы
- •6.6. Операции с последовательными контейнерами
- •6.6.1. Удаление
- •6.6.2. Присваивание и обмен
- •6.6.3. Обобщенные алгоритмы
- •6.7. Читаем текстовый файл
- •6.8. Выделяем слова в строке
- •6.9. Обрабатываем знаки препинания
- •6.10. Приводим слова к стандартной форме
- •6.11. Дополнительные операции со строками
- •6.12. Строим отображение позиций слов
- •6.12.2. Поиск и извлечение элемента отображения
- •6.12.3. Навигация по элементам отображения
- •6.12.4. Словарь
- •6.12.5. Удаление элементов map
- •6.13. Построение набора стоп-слов
- •6.13.2. Поиск элемента
- •6.13.3. Навигация по множеству
- •6.14. Окончательная программа
- •6.15. Контейнеры multimap и multiset
- •6.16. Стек
- •6.17. Очередь и очередь с приоритетами
- •6.18. Вернемся в классу iStack
- •Глава 7. Функции
- •7.1. Введение
- •7.2. Прототип функции
- •7.2.1. Тип возвращаемого функцией значения
- •7.2.2. Список параметров функции
- •7.2.3. Проверка типов формальных параметров
- •7.3. Передача аргументов
- •7.3.1. Параметры-ссылки
- •7.3.2. Параметры-ссылки и параметры-указатели
- •7.3.3. Параметры-массивы
- •7.3.5. Значения параметров по умолчанию
- •7.3.6. Многоточие
- •7.4. Возврат значения
- •7.5. Рекурсия
- •7.6. Встроенные функции
- •7.8.1. Класс для обработки параметров командной строки
- •7.9. Указатели на функции
- •7.9.1. Тип указателя на функцию
- •7.9.2. Инициализация и присваивание
- •7.9.3. Вызов
- •7.9.4. Массивы указателей на функции
- •7.9.5. Параметры и тип возврата
- •Глава 8. Область видимости и время жизни
- •8.1. Область видимости
- •8.1.1. Локальная область видимости
- •8.2. Глобальные объекты и функции
- •8.2.1. Объявления и определения
- •8.2.2. Сопоставление объявлений в разных файлах
- •8.2.3. Несколько слов о заголовочных файлах
- •8.3.1. Автоматические объекты
- •8.3.2. Регистровые автоматические объекты
- •8.3.3. Статические локальные объекты
- •8.4. Динамически размещаемые объекты
- •8.4.3. Динамическое создание и уничтожение массивов
- •8.5.1. Определения пространства имен
- •8.5.2. Оператор разрешения области видимости
- •8.5.3. Вложенные пространства имен
- •8.5.4. Определение члена пространства имен
- •8.5.6. Безымянные пространства имен
- •8.6.1. Псевдонимы пространства имен
- •8.6.2. Using-объявления
- •8.6.3. Using-директивы
- •8.6.4. Стандартное пространство имен std
- •Глава 9. Перегруженные функции
- •9.1. Объявления перегруженных функций
- •9.1.1. Зачем нужно перегружать имя функции
- •9.1.2. Как перегрузить имя функции
- •9.1.3. Когда не надо перегружать имя функции
- •9.2. Три шага разрешения перегрузки
- •9.3.1. Подробнее о точном соответствии
- •9.3.2. Подробнее о расширении типов
- •9.3.3. Подробнее о стандартном преобразовании
- •9.3.4. Ссылки
- •9.4. Детали разрешения перегрузки функций
- •9.4.1. Функции-кандидаты
- •9.4.2. Устоявшие функции
- •9.4.3. Наилучшая из устоявших функция
- •9.4.4. Аргументы со значениями по умолчанию
- •Глава 10. Шаблоны функций
- •10.1. Определение шаблона функции
- •10.2. Конкретизация шаблона функции
- •10.5.1. Модель компиляции с включением
- •10.5.2. Модель компиляции с разделением
- •10.5.3. Явные объявления конкретизации
- •10.11. Пример шаблона функции
- •Глава 11. Обработка исключений
- •11.1. Возбуждение исключения
- •11.2. try-блок
- •11.3. Перехват исключений
- •11.3.1. Объекты-исключения
- •11.3.2. Раскрутка стека
- •11.3.3. Повторное возбуждение исключения
- •11.3.4. Перехват всех исключений
- •11.4. Спецификации исключений
- •11.4.1. Спецификации исключений и указатели на функции
- •11.5. Исключения и вопросы проектирования
- •Глава 12. Обобщенные алгоритмы
- •12.1. Краткий обзор
- •12.2. Использование обобщенных алгоритмов
- •12.3. Объекты-функции
- •12.3.1. Предопределенные объекты-функции
- •12.3.3. Сравнительные объекты-функции
- •12.3.4. Логические объекты-функции
- •12.3.5. Адаптеры функций для объектов-функций
- •12.3.6. Реализация объекта-функции
- •12.4. Еще раз об итераторах
- •12.4.1. Итераторы вставки
- •12.4.2. Обратные итераторы
- •12.4.3. Потоковые итераторы
- •12.4.4. Итератор istream_iterator
- •12.4.5. Итератор ostream_iterator
- •12.4.6. Пять категорий итераторов
- •12.5.1. Алгоритмы поиска
- •12.5.2. Алгоритмы сортировки и упорядочения
- •12.5.3. Алгоритмы удаления и подстановки
- •12.5.4. Алгоритмы перестановки
- •12.5.5. Численные алгоритмы
- •12.5.6. Алгоритмы генерирования и модификации
- •12.5.8. Алгоритмы работы с множествами
- •12.5.9. Алгоритмы работы с хипом
- •12.6.1. Операция list_merge()
- •12.6.2. Операция list::remove()
- •12.6.3. Операция list::remove_if()
- •12.6.5. Операция list::sort()
- •12.6.6. Операция list::splice()
- •12.6.7. Операция list::unique()
- •Глава 13. Классы
- •13.1. Определение класса
- •13.1.1. Данные-члены
- •13.1.2. Функции-члены
- •13.1.3. Доступ к членам
- •13.1.4. Друзья
- •13.1.5. Объявление и определение класса
- •13.3. Функции-члены класса
- •13.3.1. Когда использовать встроенные функции-члены
- •13.3.2. Доступ к членам класса
- •13.3.3. Закрытые и открытые функции-члены
- •13.3.4. Специальные функции-члены
- •13.3.5. Функции-члены со спецификаторами const и volatile
- •13.3.6. Объявление mutable
- •13.4. Неявный указатель this
- •13.4.1. Когда использовать указатель this
- •13.5. Статические члены класса
- •13.5.1. Статические функции-члены
- •13.6. Указатель на член класса
- •13.6.1. Тип члена класса
- •13.6.2. Работа с указателями на члены класса
- •13.6.3. Указатели на статические члены класса
- •13.7. Объединение – класс, экономящий память
- •13.8. Битовое поле – член, экономящий память
- •13.9.1. Разрешение имен в области видимости класса
- •Глава 14. Инициализация, присваивание и уничтожение класса
- •14.1. Инициализация класса
- •14.2. Конструктор класса
- •14.2.1. Конструктор по умолчанию
- •14.2.2. Ограничение прав на создание объекта
- •14.2.3. Копирующий конструктор
- •14.3. Деструктор класса
- •14.3.1. Явный вызов деструктора
- •14.3.2. Опасность увеличения размера программы
- •14.4. Массивы и векторы объектов
- •14.4.2. Вектор объектов
- •14.5. Список инициализации членов
- •14.6.1. Инициализация члена, являющегося объектом класса
- •Глава 15. Перегруженные операторы и определенные пользователем преобразования
- •15.1. Перегрузка операторов
- •15.1.1. Члены и не члены класса
- •15.1.2. Имена перегруженных операторов
- •15.1.3. Разработка перегруженных операторов
- •15.2. Друзья
- •15.3. Оператор =
- •15.4. Оператор взятия индекса
- •15.5. Оператор вызова функции
- •15.6. Оператор “стрелка”
- •15.7. Операторы инкремента и декремента
- •15.8. Операторы new и delete
- •15.8.1. Операторы new[ ] и delete [ ]
- •15.8.2. Оператор размещения new() и оператор delete()
- •15.9. Определенные пользователем преобразования
- •15.9.1. Конвертеры
- •15.9.2. Конструктор как конвертер
- •15.10.1. Еще раз о разрешении перегрузки функций
- •15.10.2. Функции-кандидаты
- •15.11.1. Объявления перегруженных функций-членов
- •15.11.2. Функции-кандидаты
- •15.11.3. Устоявшие функции
- •15.12.1. Операторные функции-кандидаты
- •15.12.2. Устоявшие функции
- •15.12.3. Неоднозначность
- •Глава 16. Шаблоны классов
- •16.1. Определение шаблона класса
- •16.1.1. Определения шаблонов классов Queue и QueueItem
- •16.2. Конкретизация шаблона класса
- •16.2.1. Аргументы шаблона для параметров-констант
- •16.3. Функции-члены шаблонов классов
- •16.3.1. Функции-члены шаблонов Queue и QueueItem
- •16.4. Объявления друзей в шаблонах классов
- •16.4.1. Объявления друзей в шаблонах Queue и QueueItem
- •16.5. Статические члены шаблонов класса
- •16.6. Вложенные типы шаблонов классов
- •16.7. Шаблоны-члены
- •16.8.2. Модель компиляции с разделением
- •16.8.3. Явные объявления конкретизации
- •16.12. Пространства имен и шаблоны классов
- •16.13. Шаблон класса Array
- •Глава 17. Наследование и подтипизация классов
- •17.1. Определение иерархии классов
- •17.1.1. Объектно-ориентированное проектирование
- •17.2. Идентификация членов иерархии
- •17.2.1. Определение базового класса
- •17.2.3. Резюме
- •17.3. Доступ к членам базового класса
- •17.4. Конструирование базового и производного классов
- •17.4.1. Конструктор базового класса
- •17.4.2. Конструктор производного класса
- •17.4.3. Альтернативная иерархия классов
- •17.4.4. Отложенное обнаружение ошибок
- •17.4.5. Деструкторы
- •17.5.1. Виртуальный ввод/вывод
- •17.5.2. Чисто виртуальные функции
- •17.5.3. Статический вызов виртуальной функции
- •17.5.4. Виртуальные функции и аргументы по умолчанию
- •17.5.5. Виртуальные деструкторы
- •17.5.6. Виртуальная функция eval()
- •17.5.7. Почти виртуальный оператор new
- •17.5.8. Виртуальные функции, конструкторы и деструкторы
- •17.7. Управляющий класс UserQuery
- •17.7.1. Определение класса UserQuery
- •17.8. Соберем все вместе
- •Глава 18. Множественное и виртуальное наследование
- •18.1. Готовим сцену
- •18.2. Множественное наследование
- •18.3. Открытое, закрытое и защищенное наследование
- •18.3.1. Наследование и композиция
- •18.3.2. Открытие отдельных членов
- •18.3.3. Защищенное наследование
- •18.3.4. Композиция объектов
- •18.4. Область видимости класса и наследование
- •18.5.1. Объявление виртуального базового класса
- •18.5.2. Специальная семантика инициализации
- •18.5.3. Порядок вызова конструкторов и деструкторов
- •18.5.4. Видимость членов виртуального базового класса
- •18.6.2. Порождение класса отсортированного массива
- •18.6.3. Класс массива с множественным наследованием
- •19.1. Идентификация типов во время выполнения
- •19.1.1. Оператор dynamic_cast
- •19.1.2. Оператор typeid
- •19.1.3. Класс type_info
- •19.2. Исключения и наследование
- •19.2.1. Исключения, определенные как иерархии классов
- •19.2.2. Возбуждение исключения типа класса
- •19.2.4. Объекты-исключения и виртуальные функции
- •19.2.5. Раскрутка стека и вызов деструкторов
- •19.2.6. Спецификации исключений
- •19.2.7. Конструкторы и функциональные try-блоки
- •19.3.1. Функции-кандидаты
- •19.3.3. Наилучшая из устоявших функций
- •Глава 20. Библиотека IOSTREAM
- •20.1. Оператор вывода <<
- •20.2. Ввод
- •20.2.1. Строковый ввод
- •20.3. Дополнительные операторы ввода/вывода
- •20.4. Перегрузка оператора вывода
- •20.5. Перегрузка оператора ввода
- •20.6. Файловый ввод/вывод
- •20.7. Состояния потока
- •20.8. Строковые потоки
- •20.9. Состояние формата
- •20.10. Сильно типизированная библиотека
- •Приложение
- •Глава 21. Обобщенные алгоритмы в алфавитном порядке
- •accumulate()
- •adjacent_difference()
- •adjacent_find()
- •binary_search()
- •copy()
- •copy_backward()
- •count_if()
- •equal()
- •equal_range()
- •fill()
- •find()
- •find_if()
- •find_end()
- •find_first_of()
- •generate()
- •generate_n()
- •includes()
- •inplace_merge()
- •iter_swap()
- •lexicographical_compare()
- •max_element()
- •merge()
- •mismatch()
- •next_permutation()
- •nth_element()
- •partial_sort()
- •partial_sort_copy()
- •partial_sum()
- •partition()
- •prev_permutation()
- •random_shuffle()
- •remove()
- •remove_copy()
- •remove_if()
- •remove_copy_if()
- •replace()
- •replace_copy()
- •replace_if()
- •replace_copy_if()
- •reverse_copy()
- •rotate()
- •search_n()
- •set_intersection()
- •set_union()
- •sort()
- •stable_partition()
- •swap()
- •swap_ranges()
- •transform()
- •unique_copy()
- •upper_bound()
- •Алгоритмы для работы с хипом
- •make_heap()
- •pop_heap()
- •push_heap()
- •sort_heap()

С++ для начинающих |
206 |
(a) if ( ivall != iva12 ) ivall = iva12
else
ivall = iva12 = 0;
(b)if ( ivat < minval ) minvat = ival; occurs = 1;
(c)if ( int ival = get_value()) cout << "ival = "
<<ival << endl;
if ( ! ival )
cout << "ival = 0\n";
(d) if ( ival = 0 )
ival = get_value();
(e)if ( iva1 == 0 ) else ival = 0;
Упражнение 5.4
Преобразуйте тип параметра occurs функции min(), сделав его не ссылкой, а простым объектом. Запустите программу. Как изменилось ее поведение?
5.4. Инструкция switch
Длинные цепочки инструкций if-else, наподобие приведенной в конце предыдущего раздела, трудны для восприятия и потому являются потенциальным источником ошибок. Модифицируя такой код, легко сопоставить, например, разные else и if. Альтернативный метод выбора одного их взаимоисключающих условий предлагает инструкция switch.
Для иллюстрации инструкции switch рассмотрим следующую задачу. Нам надо подсчитать, сколько раз встречается каждая из гласных букв в указанном отрывке текста. (Общеизвестно, что буква e – наиболее часто встречающаяся гласная в английском языке.) Вот алгоритм программы:
1.Считывать по одному символу из входного потока, пока они не кончатся.
2.Сравнить каждый символ с набором гласных.
3.Если символ равен одной из гласных, прибавить 1 к ее счетчику.
4.Напечатать результат.
Написанная программа была запущена, в качестве контрольного текста использовался раздел из оригинала данной книги. Результаты подтвердили, что буква e действительно самая частая:
aCnt: 394 eCnt: 721 iCnt: 461 oCnt: 349 uCnt: 186

С++ для начинающих |
207 |
Инструкция switch состоит из следующих частей:
•ключевого слова switch, за которым в круглых скобках идет выражение,
char ch;
while ( cm >> ch )
являющееся условием:
switch( ch )
• набора меток case, состоящих из ключевого слова case и константного выражения, с которым сравнивается условие. В данном случае каждая метка
case 'a': case 'e': case 'i': case 'o':
представляет одну из гласных латинского алфавита:
case 'u':
•последовательности инструкций, соотносимых с метками case. В нашем примере с каждой меткой будет сопоставлена инструкция, увеличивающая значение соответствующего счетчика;
•необязательной метки default, которая является аналогом части else инструкции if-else. Инструкции, соответствующие этой метке, выполняются, если условие не отвечает ни одной из меток case. Например, мы можем подсчитать суммарное количество встретившихся символов, не являющихся
default: // любой символ, не являющийся гласной
гласными буквами:
++non_vowe1_cnt;
Константное выражение в метке case должно принадлежать к целому типу, поэтому
// неверные значения меток case 3.14: // не целое
следующие строки ошибочны: case ival: // не константа
Кроме того, две разные метки не могут иметь одинаковое значение.
Выражение условия в инструкции switch может быть сколь угодно сложным, в том числе включать вызовы функций. Результат вычисления условия сравнивается с метками case, пока не будет найдено равное значение или не выяснится, что такого значения нет. Если метка обнаружена, выполнение будет продолжено с первой инструкции после нее, если же нет, то с первой инструкции после метки default (при ее наличии) или после всей составной инструкции switch.

С++ для начинающих |
208 |
В отличие от if-else инструкции, следующие за найденной меткой, выполняются друг за другом, проходя все нижестоящие метки case и метку default. Об этом часто забывают. Например, данная реализация нашей программы выполняется совершенно не
#include <iostream>
int main()
{
char ch;
int aCnt=0, eCnt=0, iCnt=0, oCnt=0, uCnt=0;
while ( cin >> ch )
// Внимание! неверная реализация! switch ( ch ) {
case 'a': ++aCnt;
case 'e': ++eCnt;
case 'i': ++iCnt;
case 'o': ++oCnt;
case 'u': ++uCnt;
}
cout << "Встретилась a: \t" << aCnt << '\n'
<<"Встретилась e: \t" << eCnt << '\n'
<<"Встретилась i: \t" << iCnt << '\n'
<<"Встретилась o: \t" << oCnt << '\n'
<<"Встретилась u: \t" << uCnt << '\n';
так, как хотелось бы:
}
Если значение ch равно i, выполнение начинается с инструкции после case 'i' и iCnt возрастет на 1. Однако следующие ниже инструкции, ++oCnt и ++uCnt, также выполняются, увеличивая значения и этих переменных. Если же переменная ch равна a, изменятся все пять счетчиков.
Программист должен явно дать указание компьютеру прервать последовательное выполнение инструкций в определенном месте switch, вставив break. В абсолютном большинстве случаев за каждой метке case должен следовать соответствующий break.
break прерывает выполнение switch и передает управление инструкции, следующей за закрывающей фигурной скобкой, – в данном случае производится вывод. Вот как это должно выглядеть:

С++ для начинающих |
209 |
switch ( ch ) { case 'a':
++aCnt;
break; case 'e':
++eCnt;
break; case 'i':
++iCnt;
break; case 'o':
++oCnt;
break; case 'u':
++uCnt;
break;
}
Если почему-либо нужно, чтобы одна из секций не заканчивалась инструкцией break, то желательно написать в этом месте разумный комментарий. Программа создается не только для машин, но и для людей, и необходимо сделать ее как можно более понятной для читателя. Программист, изучающий чужой текст, не должен сомневаться, было ли нестандартное использование языка намеренным или ошибочным.
При каком условии программист может отказаться от инструкции break и позволить программе провалиться сквозь несколько меток case? Одним из таких случаев является необходимость выполнить одни и те же действия для двух или более меток. Это может понадобиться потому, что с case всегда связано только одно значение. Предположим, мы не хотим подсчитывать, сколько раз встретилась каждая гласная в отдельности, нас интересует только суммарное количество всех встретившихся гласных. Это можно
int vowelCnt = 0; // ...
switch ( ch )
{
//любой из символов a,e,1,o,u
//увеличит значение vowelCnt
case 'a': case 'e': case 'i': case 'o': case 'u':
++vowe1Cnt;
break;
сделать так:
}
Некоторые программисты подчеркивают осознанность своих действий тем, что предпочитают в таком случае писать метки на одной строке:

С++ для начинающих |
210 |
switch ( ch )
{
// допустимый синтаксис case 'a': case 'e':
case 'i': case 'o': case 'u': ++vowe1Cnt;
break;
}
В данной реализации все еще осталась одна проблема: как будут восприняты слова типа
UNIX
Наша программа не понимает заглавных букв, поэтому заглавные U и I не будут
switch ( ch ) {
case 'a': case 'A': ++aCnt;
break;
case 'e': case 'E': ++eCnt;
break;
case 'i': case 'I': ++iCnt;
break;
case 'o': case 'O': ++oCnt;
break;
case 'u': case 'U': ++uCnt;
break;
отнесены к гласным. Исправить ситуацию можно следующим образом:
}
Метка default является аналогом части else инструкции if-else. Инструкции, соответствующие default, выполняются, если условие не отвечает ни одной из меток case. Например, добавим к нашей программе подсчет суммарного количества согласных:

С++ для начинающих |
211 |
#include <iostream> #include <ctype.h>
int main()
{
char ch;
int aCnt=0, eCnt=0, iCnt=0, oCnt=0, uCnt=0, consonantCount=0;
while ( cin >> ch ) switch ( ch ) {
case 'a': case 'A': ++aCnt;
break;
case 'e': case 'E': ++eCnt;
break;
case 'i': case 'I': ++iCnt;
break;
case 'o': case 'O': ++oCnt;
break;
case 'u': case 'U': ++uCnt;
break;
default:
if ( isa1pha( ch ) ) ++consonantCnt;
break;
}
cout << "Встретилась a: \t" << aCnt << '\n'
<<"Встретилась e: \t" << eCnt << '\n'
<<"Встретилась i: \t" << iCnt << '\n'
<<"Встретилась o: \t" << oCnt << '\n'
<<"Встретилась u: \t" << uCnt << '\n'
<<"Встретилось согласных: \t" << consonantCnt
<<'\n';
}
isalpha() – функция стандартной библиотеки С; она возвращает true, если ее аргумент является буквой. isalpha() объявлена в заголовочном файле ctype.h. (Функции из ctype.h мы будем рассматривать в главе 6.)
Хотя оператор break функционально не нужен после последней метки в инструкции switch, лучше его все-таки ставить. Причина проста: если мы впоследствии захотим добавить еще одну метку после case, то с большой вероятностью забудем вписать недостающий break.
Условная часть инструкции switch может содержать объявление, как в следующем примере:
switch( int ival = get_response() )
ival инициализируется значением, получаемым от get_response(), и это значение сравнивается со значениями меток case. Переменная ival видна внутри блока switch, но не вне его.

С++ для начинающих |
212 |
Помещать же инструкцию объявления внутри тела блока switch не разрешается. Данный
case illegal_definition:
//ошибка: объявление не может
//употребляться в этом месте
string file_name = get_file_name();
// ...
фрагмент кода не будет пропущен компилятором:
break;
Если бы разрешалось объявлять переменную таким образом, то ее было бы видно во всем блоке switch, однако инициализируется она только в том случае, если выполнение прошло через данную метку case.
Мы можем употребить в этом месте составную инструкцию, тогда объявление переменной file_name будет синтаксически правильным. Использование блока гарантирует, что объявленная переменная видна только внутри него, а в этом контексте
case ok:
{
// ок
string file_name = get_file_name();
// ...
она заведомо инициализирована. Вот как выглядит правильный текст:
break;
}
Упражнение 5.5
Модифицируйте программу из данного раздела так, чтобы она подсчитывала не только буквы, но и встретившиеся пробелы, символы табуляции и новой строки.
Упражнение 5.6
Модифицируйте программу из данного раздела так, чтобы она подсчитывала также количество встретившихся двухсимвольных последовательностей ff, fl и fi.
Упражнение 5.7
Найдите и исправьте ошибки в следующих примерах:
switch ( ival ) { case 'a': aCnt++; case 'e': eCnt++; default: iouCnt++;
(a)
}
(b)

С++ для начинающих |
213 |
switch ( ival ) { case 1:
int ix = get_value(); ivec[ ix ] = ival; break;
default:
ix = ivec.sizeQ-1; ivec[ ix ] = ival;
}
switch ( ival ) { case 1, 3, 5, 7, 9:
oddcnt++;
break;
case 2, 4, 6, 8, 10: evencnt++;
break;
(c)
}
int iva1=512 jva1=1024, kva1=4096; int bufsize;
// ...
switch( swt ) { case ival:
bufsize = ival * sizeof( int ); break;
case jval:
bufsize = jval * sizeof( int ); break;
case kval:
bufsize = kval * sizeof( int ); break;
(d)
}
enum { illustrator = 1, photoshop, photostyler = 2 }; switch ( ival ) {
case illustrator: --i11us_1icense; break;
case photoshop: --pshop_1icense; break;
case photostyler: --psty1er_license;
(e)
break;