
- •Интерференция световых волн. Когерентность волн.
- •Зеркала Френеля.
- •Бипризма Френеля.
- •Опыт Юнга
- •Интерференция в тонких пленках.
- •Просветление оптики.
- •Практические применения интерференции. Интерферометры
- •Дифракция света. Принцип Гюйгенса-Френеля. Дифракция Френеля. Метод зон Френеля. Дифракция Френеля на простейших преградах (круглом отверстии, крае полуплоскости).
- •Спираль Корню.
- •Дифракция Фраунгофера от щели
- •Дифракция на дифракционной решетке Пропускающие решетки. Отражательные решетки.
- •Фотометрические величины и единицы. Источники Ламберта.
- •Тепловое излучение тел.
- •Равновесное тепловое излучение. Абсолютно черное тело. Закон Кирхгофа.
- •Законы излучения абсолютно черного тела Формула Планка.
- •Закон смещения Вина.
- •Закон Рэлея-Джинса.
- •Закон Стефана – Больцмана
- •Оптическая пирометрия.
- •Радиационная температура.
- •Цветовая температура.
- •Получение поляризованного света. Прохождение света через поляризатор. Закон Малюса.
- •Призмы Николя (Поляризационные приборы и использование поляризованных лучей).
- •Отражение света на границе двух прозрачных сред. Формулы Френеля. Угол Брюстера.
- •Оптически активные вещества.
- •Теория вращения плоскости поляризации.
- •Вращение плоскости поляризации в магнитном поле.
- •Закон преломления света. Явление дисперсии. Нормальная и аномальная дисперсии.
- •Элементарная теория дисперсии света. Электронная теория дисперсии
- •Опыты Ньютона
- •Классификация мутных сред
- •Поглощение и рассеяние излучения
- •Закон Бугера. Коэффициент поглощения
- •Внешний фотоэффект.
- •1. Максимальная начальная скорость фотоэлектронов определяется частотой света и не зависит от его интенсивности.
- •Внутренний фотоэффект.
- •Масса и импульс фотона.
- •Эффект Комптона. Рассеяние рентгеновского излучения веществом.
- •Элементарная теория эффекта Комптона.
- •Давление света. Опыты Лебедева
- •Фотохимические явления.
- •Фотография
- •Голография
- •Теория водородного атома. Спектральные серии и уровни энергии. Закономерности в атомных спектрах.
- •Постулаты Бора.
- •Модель Бора атома водорода
- •Гипотеза Де Бройля.
- •Поляризация излучения гелий-неонового лазера.
- •Основные характеристики атомного ядра.
- •Ядерные силы.
- •Ядерные реакции
- •Реакции деления.
- •Ядерный реактор.
- •Реакция синтеза.
- •Явление радиоактивности
Тепловое излучение тел.
Тепловым излучением тел называется электромагнитное излучение, возникающее за счет той части внутренней энергии тела, которая связана с тепловым движением его частиц.
Основными характеристиками теплового излучения тел нагретых до температуры Tявляются:
1. Спектральная плотность энергетической светимостиr(, Т) -количество энергии, излучаемое единицей поверхности тела, в единицу времени в единичном интервале длин волн (вблизи рассматриваемой длины волны ). Эта величина зависит от температуры тела, длины волны испускаемого света, а также от природы и состояния поверхности излучающего тела. В системе СИr(, T) имеет размерность [Вт/м3].
2. Энергетическая светимостьR(T)-количество энергии, излучаемой в единицу времени с единицы поверхности тела, во всем интервале длин волн. Зависит от температуры, природы излучающего тела и состояния его поверхности.
Энергетическая светимость R(T)связана со спектральной плотностью энергетической светимостиr(, T)следующим образом:
(1).
Размерность энергетической светимости в системе СИ - [Вт/м2]
3. Все тела не только излучают, но и поглощают падающие на их поверхность электромагнитные волны. Для определения поглощательной способности тел по отношению к электромагнитным волнам определенной длины волны вводится понятиекоэффициента монохроматического поглощения-отношение величины поглощенной поверхностью тела энергии монохроматической волны к величине энергии падающей монохроматической волны:
(2).
Коэффициент монохроматического поглощения является безразмерной величиной, зависящей от температуры и длины волны. Он показывает, какая доля энергии падающей монохроматической волны поглощается поверхностью тела. Величина (,T)может принимать значения от 0 до 1.
Равновесное тепловое излучение. Абсолютно черное тело. Закон Кирхгофа.
Если мы создадим некоторую оболочку, непрозрачную для электромагнитных волн, и будем поддерживать ее при постоянной температуре, то внутри ее установится равновесие. Вся энергия, излучаемая внутренней поверхностью оболочки, будет ею же и поглощаться.Излучение в адиабатически замкнутой системе (не обменивающейся теплотой с внешней средой) называется равновесным. Если создать маленькое отверстие в стенке оболочки, состояние равновесия измениться слабо и выходящее из полости излучение будет соответствовать равновесному излучению.
Если в такое отверстие направить луч, то после многократных отражений и поглощения на стенках полости он не сможет выйти обратно наружу. Это значит, что для такого отверстия коэффициент поглощения(, T)= 1.
Рассмотренная замкнутая полость с небольшим отверстием служит одной из моделей абсолютно черного тела.
Абсолютно черным теломназывается тело, которое поглощает все падающее на него излучение независимо от направления падающего излучения, его спектрального состава и поляризации (ничего не отражая и не пропуская).
Для абсолютно черного тела, спектральная плотность энергетической светимости является некоторой универсальной функцией длины волны и температурыf(,T)и не зависит от его природы.
Все тела в природе частично отражают падающее на их поверхность излучение и поэтому не относятся к абсолютно черным телам.Если коэффициент монохроматического поглощения тела одинаков для всех длин волн и меньшеединицы ((, T) =Т=const<1),то такое тело называется серым. Коэффициент монохроматического поглощения серого тела зависит только от температуры тела, его природы и состояния его поверхности.
Кирхгофом было показано, что для всех тел, независимо от их природы, отношение спектральной плотности энергетической светимости к коэффициенту монохроматического поглощения является той же универсальной функцией длины волны и температурыf(,T), что и спектральная плотность энергетической светимости абсолютно черного тела:
(3)
Уравнение (3) представляет собой закон Кирхгофа.
Закон Кирхгофа можно сформулировать таким образом:для всех тел системы, находящейся в термодинамическом равновесии, отношение спектральной плотности энергетической светимости к коэффициенту монохроматического поглощения не зависит от природы тела и является одинаковой для всех тел функцией, зависящей от длины волны и температуры Т.
Из вышесказанного и формулы (3) ясно, что при данной температуре сильнее излучают те серые тела, которые обладают большим коэффициентом поглощения. Наиболее сильно излучают абсолютно черные тела.