
- •Введение
- •Измерения, счет, контроль
- •Физические величины, системы единицфизических величин
- •Естественные системы единиц
- •Внесистемные единицы
- •Классификация измерений
- •Методы измерений
- •Погрешности измерений
- •Методы выявления и исключения погрешностей
- •Формы представления результатов измерений
- •Средства измерений. Метрологические характеристики средств измерений
Внесистемные единицы
Даже самая универсальная система единиц ФВ не может обеспечить нужды всех потребителей. Отсюда очевидна необходимость стандартизации единиц, не входящих в Международную систему единиц ФВ. В стандарт включают «внесистемные единицы», либо получившие широкое распространение и применяемые по традиции (тонна, гектар, карат), либо единицы, применяемые в конкретных областях и обеспечивающие определенные удобства (градус Цельсия, морская миля).
Термин «внесистемная единица» имеет два разных истолкования:
единица, не входящая в данную систему единиц ФВ;
единица, не входящая ни в какую из систем единиц ФВ.
Примеры «внесистемных единиц», не входящих в SI, но являющихся заимствованными из других систем, допущенных стандартом к применению наряду с единицами SI:
тонна (единица системы МТС, 1 т = 1000 кг = 1 Мг);
минута, час, сутки и др. широко употребляемые единицы времени;
угловые градус, минута, секунда;
морская миля, кабельтов, узел;
атмосфера (единица давления в 1 кгс на площадь 1 см2).
«Внесистемность» таких единиц времени, как минута, час, сутки (кратных основной единице SI – секунде) связана с не соответствующей принятой в SI кратностью. Для минут и часа кратность принята из шестидесятиричной системы исчисления, а для суток – из двойной двенадцатиричной. Для приведенных угловых единиц также принята шестидесятиричная кратность, но эти углы вовсе системно не связаны с единицей SI – радианом. Морская миля, кабельтов и узел представляют собой самостоятельную систему единиц длины и скорости, используемых в навигации. Их преимуществом по сравнению с единицами SI является согласованность с дугой большого круга Земли, не реализованной при первичном определении метра из-за недостаточной точности измерений.
Атмосфера – единица давления из системы МКГСС, которая соответствует давлению, производимому силой 1 кгс на площадь 1 см2, и названа «атмосферой» ввиду близости ее размера и среднего давления атмосферного воздуха на уровне моря.
К единицам, не входящим ни в какую из систем единиц ФВ, а также не образующим самостоятельные локальные системы, можно отнести такие единицы как ангстрем, икс-единица, световой год, парсек (единицы длины); карат (единица массы); миллиметр ртутного столба, миллиметр водяного столба (единицы давления). Сюда же можно отнести такие устаревшие единицы, как «локоть», «аршин», «перестрел» и т.п.
Кроме того, «внесистемными» называют относительные единицы, образованные отношениями одноименных величин или их функционалов. Относительные единицы предназначены для измерения величин, фактически не входящих в систему физических величин, поскольку относительные величины не имеют размерности. Но относительные единицы можно использовать для оценивания соотношений (дольных, кратных) системных физических величин. Относительные единицы могут быть неименованными и именованными (примеры применения единиц: коэффициент полезного действия 0,6; относительная влажность 65 %, содержание алкоголя в крови 1,2 о/оо). Широко используемые именованные относительные единицы – проценты (для получения значения в процентах отношение умножают на 102), промилле (отношение умножают на 103), пропромилле или миллионная доля (отношение умножают на 106).
Числовое значение величины при ее оценке в логарифмических единицах представляет собой логарифм отношения двух одноименных физических величин. Относительные логарифмические единицы имеют наименования (бел, фон, октава и др.), в них применяют десятичные, двоичные и натуральные логарифмы. Логарифмические единицы применяют для представления таких величин, как уровень звукового давления, усиление, ослабление, для выражения частотного интервала и т. п. При оценке таких ФВ как уровень звукового давления, усиление, ослабление используют не только базовые единицы, но и кратные. Достаточно часто употребляемыми логарифмическими единицами величин являются 1 бел и 1 децибел (дольная единица от бела, равная 0,1 Б).
Бел определяют как соотношение 1Б = lgР2/Р1 при Р2 = 10Р1 (где Р2 и 10Р1 – одноименные энергетические величины: мощности, энергии, плотности энергии и т. п.). Следует иметь в виду логарифмический характер связи между величинами. Так, если характеристика усиления электрических мощностей при отношении полученной мощности Р2 к исходной Р1 равна 10, логарифмическая величина усиления будет составлять один бел или 10 дБ, при увеличении или уменьшении мощности в 1000 раз логарифмическая величина усиления составит 3 Б или 30 дБ и т.д.
ВИДЫ И МЕТОДЫ ИЗМЕРЕНИЙ
Под измерением некоторого свойства можно понимать получение оценки этого свойства при сопоставлении измеряемой величины с единицей, воспроизводимой мерой (непосредственное воспроизведение) или прибором (опосредованное воспроизведение). Измерением свойства также часто называют помещение измеряемого свойства в определенную точку оценочной шкалы с использованием экспертных и аппаратурных методов.
В отличие от квалиметрии, которая имеет наиболее широкий набор объектов оценки, метрологиязанимается измерениями физических величин. Физические величины – свойства объектов, которые можно объективно оценивать с использованием средств измерений.
Измерение физической величины – совокупность операций по применению технического средства, хранящего единицу физической величины, обеспечивающих нахождение соотношения (в явном или неявном виде) измеряемой величины с ее единицей и получение значения этой величины.
Основное уравнение измерения физической величины можно записать в виде
Q = Nq,
где Q– измеряемая физическая величина;
q– единица физической величины;
N– числовое значение физической величины (определяет соотношение измеряемой величины и использованной при измерениях единицы.
Из уравнения измерения следует, что в основе любого измерения лежит сравнение исследуемой физической величины с аналогичной величиной определенного размера, принятой за единицу. Суть измерения состоит в определении числового значения физической величины. Этот процесс называют измерительным преобразованием, подчеркивая связь измеряемой физической величины с полученным числом. Можно представить однократное преобразование или цепочку преобразований измеряемой физической величины в иную величину, но конечной целью преобразования является получение числа (рисунок 1).
Измерительное преобразование всегда осуществляется с использованием некоторого физического закона или эффекта, который рассматривают как принцип, положенный в основу измерения (измерительного преобразования).
Принцип измерений – физическое явление или эффект, положенное в основу измерений. Как примеры можно рассмотреть измерение температуры с помощью термопары (использование термоэлектрического эффекта), измерение массы взвешиванием на пружинных весах (определение искомой массы по пропорциональной ей силы тяжести, основанное на принципе пропорционального упругого растяжения).
Из примеров видно, что фактически принципы измерений определяются принципами, заложенными в использованные средства измерений. Поскольку принципы измерений связаны с измерительными преобразованиями, то можно говорить о средствах измерений, построенных на определенных принципах преобразования измерительной информации: механических, оптических, электрических, пневматических, гидравлических, магнитных и других. В сложных средствах измерений используют комбинированные принципы, включающих два и более конкретных принципа, например оптико-механические приборы, фотоэлектрические приборы, электромагнитные приборы и ряд других.
Для систематизации подхода к измерению, для выявления и оценки погрешностей, прежде всего, необходимо классифицировать сами измерения.