- •ПРЕДИСЛОВИЕ
- •О СТРУКТУРЕ КНИГИ
- •ВВЕДЕНИЕ
- •1. ОСНОВНЫЕ ЭТАПЫ В РЕАЛИЗАЦИИ СОВЕТСКОГО АТОМНОГО ПРОЕКТА
- •1.1. Первые шаги по созданию ядерной инфраструктуры
- •1.2. Некоторые результаты работ над советским атомным проектом в 1942 году
- •2. РАБОТЫ ПО АТОМНОМУ ПРОЕКТУ В 1943 ГОДУ
- •2.1. Первые шаги деятельности Специальной лаборатории по атомному ядру
- •2.2. Организационные мероприятия по формированию и укреплению работ Специальной лаборатории по атомному ядру
- •3. РАБОТЫ ПО АТОМНОЙ ПРОБЛЕМЕ В 1944 ГОДУ И ПЕРВОЙ ПОЛОВИНЕ 1945 ГОДА
- •3.1. Вопросы разделения изотопов урана и создание ядерных реакторов
- •3.2. Анализ особенностей создания атомной бомбы
- •3.3. Данные и поставки из Германии
- •4. ОСНОВНЫЕ НАУЧНО-ТЕХНИЧЕСКИЕ ДАННЫЕ, ПОЛУЧЕННЫЕ РАЗВЕДКОЙ СССР
- •4.1. Устройство атомной бомбы
- •4.2. Фундаментальные физические данные
- •4.3. Разделение изотопов
- •4.4. Ядерные реакторы
- •4.5. Организация работ
- •ПРИЛОЖЕНИЕ К ГЛАВЕ 1
- •1. Основные моменты в докладе Л.П. Берия И.В. Сталину (март 1942 года)
- •2. Анализ данных из Великобритании
- •3. Об использовании уранового котла для получения трансурановых элементов
- •4. О рассмотрении перечня американских работ по проблеме урана
- •5. О работах по урановому проекту
- •6. Анализ данных «Обзорной работы»
- •7. О разработке атомной бомбы в США
- •8. Анализ данных, полученных из США
- •9. Анализ данных, полученных из США
- •10. Анализ данных, полученных из США
- •11. О параметрах атомной бомбы США
- •12. Об устройстве атомной бомбы США
- •1. СОЗДАНИЕ И ИСПЫТАНИЕ ПЕРВОЙ СОВЕТСКОЙ АТОМНОЙ БОМБЫ
- •1.1. Организация основных структур для создания атомного оружия СССР
- •1.2. Основные проблемы разработки первой атомной бомбы
- •1.4. Первая атомная бомба
- •1.5. Подготовка полигона к испытанию РДС-1
- •1.6. Проведение испытания РДС-1
- •1.7. Итоги испытания РДС-1
- •2. СОЗДАНИЕ ПЕРВЫХ ОБРАЗЦОВ ЯДЕРНОГО ОРУЖИЯ
- •2.1. Атомные бомбы РДС-2, РДС-3
- •2.2. Атомные заряды для первых тактических ядерных боеприпасов
- •2.3. Развитие систем нейтронного инициирования
- •2.3.1. Системы нейтронного инициирования в США
- •2.3.2. Системы нейтронного инициирования в СССР
- •3. СОЗДАНИЕ ПЕРВЫХ ОБРАЗЦОВ ТЕРМОЯДЕРНОГО ОРУЖИЯ
- •3.1. Первая информация
- •3.2. Первые исследования по водородной бомбе
- •3.3. Разработка термоядерного заряда РДС-6с
- •3.4. Разработка термоядерной бомбы РДС-37
- •3.5. Сравнение первых термоядерных зарядов СССР и США
- •1. РАБОТЫ ПО ПОВЫШЕНИЮ ТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК ЯДЕРНОГО ОРУЖИЯ
- •1.1. Тоцкие войсковые учения 1954 года
- •1.2. Первые шаги по совершенствованию ядерного оружия
- •1.2.1. Общие подходы при совершенствовании ядерного оружия
- •1.2.2. Совершенствование тактического ядерного оружия
- •1.3. Первые шаги по совершенствованию термоядерного оружия
- •1.3.1. Проблема стратегических средств доставки ядерного оружия и ее решение
- •1.3.2. Работы по созданию боевого оснащения МБР Р-7
- •1.4. Термоядерные заряды второго поколения
- •1.5. Бустинг в ядерных зарядах
- •1.5.1. Бустинг в США
- •1.5.2. Бустинг в Великобритании
- •1.5.3. Бустинг в СССР и создание новых ядерных зарядов
- •1.6. Период моратория 1958–1961 годов
- •1.6.2. Предложения по расширению тематики работ ядерных центров
- •1.6.3. Гидроядерные исследования
- •1.7. Обеспечение ядерной взрывобезопасности ядерного оружия
- •1.7.1. Проблема ядерной взрывобезопасности
- •1.7.2. Исследования проблемы ядерной взрывобезопасности
- •1.7.3. Сравнение программ полигонных испытаний СССР и США по исследованию вопросов ядерной взрывобезопасности
- •1.7.4. Некоторые результаты работ по созданию моделей аварий
- •1.8. Исследования поражающих факторов ядерных взрывов
- •1.8.1. Общие характеристики поражающих факторов ядерных взрывов
- •1.8.2. Военно-технические возможности ядерных арсеналов и поражающие факторы
- •1.8.3. Воздействие поражающих факторов ядерного взрыва
- •1.8.4. Войсковые учения и ядерные испытания
- •1.8.5. Специализированные ядерные испытания в интересах исследования ПФЯВ до 1963 года
- •1.9. Уникальные ядерные испытания в 1961 и 1962 годах
- •1.9.1. Ядерные взрывы на больших высотах
- •1.9.2. Специальные физические опыты по изучению воздействия факторов ядерного взрыва
- •1.10. Разработка ядерных зарядов в условиях подземных полигонных испытаний
- •2. СОЗДАНИЕ СОВРЕМЕННОГО ЯДЕРНОГО ОРУЖИЯ
- •2.1. Способы базирования баллистических ракет
- •2.2 Основные этапы развития морских стратегических комплексов
- •2.3. Основные этапы развития наземных стратегических комплексов
- •2.5. Разделяющиеся головные части стратегических ракет
- •2.6. Вопросы разработки специализированных видов ядерных зарядов
- •2.6.1. Разработка ЯЗ и проблема уменьшения радиоактивного поражения
- •2.6.2. Нейтронная бомба
- •2.6.3. Рентгеновский лазер с ядерной накачкой
- •2.7. Физические установки и облучательные опыты для исследования воздействия ПФЯВ
- •2.8. Ядерные испытания и физико-математическое моделирование работы ядерных зарядов
- •2.9. Характеристики ядерных испытаний СССР и США в период проведения подземных ядерных испытаний
- •2.9.1. Ядерные испытания в 1963–1976 годах
- •2.9.2. Подземные ядерные испытания большой мощности
- •1. ДОГОВОР 1974 ГОДА ОБ ОГРАНИЧЕНИИ ПОДЗЕМНЫХ ЯДЕРНЫХ ИСПЫТАНИЙ И ДОГОВОР 1976 ГОДА О ПОДЗЕМНЫХ ЯДЕРНЫХ ВЗРЫВАХ В МИРНЫХ ЦЕЛЯХ
- •1.1. Краткая история заключения Договоров
- •1.2. Военно-технические и технологические предпосылки заключения Договоров
- •1.3. Содержание Договора между СССР и США об ограничении подземных испытаний ядерного оружия
- •1.5. Проблема контроля Договора 1974 года
- •2. РАЗРАБОТКА РАКЕТ СРЕДНЕЙ ДАЛЬНОСТИ И ДОГОВОР О РСМД
- •2.1. Баллистические ракеты средней дальности
- •2.2. О разработках крылатых ракет США
- •3.1. Состояние СЯС СССР к 1991 году
- •3.2. Характеристики СНВ СССР
- •3.2.1. Количественные и технические характеристики СЯС
- •3.2.2. Характеристики развертывания стратегической авиации
- •3.2.3. Характеристики развертывания БРПЛ
- •3.2.4. Характеристики развертывания МБР
- •3.3. Характеристики СНВ США
- •3.3.1. Количественные и технические характеристики СЯС
- •3.3.2. Характеристики развертывания стратегической авиации
- •3.3.3. Характеристики развертывания БРПЛ.
- •3.3.4. Характеристики развертывания МБР
- •3.4. Сравнение общих характеристик СНВ СССР и США
- •3.5. Дезинтеграция СССР и СИСТЕМА СНВ
- •3.5.1. Состояние и перспективы МБР
- •3.5.2. Состояние и перспективы БРПЛ
- •3.5.3. Состояние и перспективы системы ТБ
- •3.5.4. Итоговые характеристики стратегических ядерных сил РФ, определяемые дезинтеграцией СССР
- •4. НОВОЕ СООТНОШЕНИЕ СТРАТЕГИЧЕСКИХ СИЛ
- •4.1. Стабильность биполярного мира
- •4.2. Распад СССР и кризис СНВ России
- •4.3. Угроза потери ядерного сдерживания для России
- •5.1. Развитие систем противовоздушной обороны в США
- •5.2. Развитие противоракетной обороны в США
- •5.3. Положение перед заключением Договора по ПРО 1972 года. Задачи создания ПРО
- •5.4. Появление РГЧ и их влияние на ПРО
- •5.5. Развитие в США программ противоспутникового оружия
- •5.6. Стратегическая оборонная инициатива США
- •5.7. Обсуждение возможностей создания совместной системы ПРО
- •5.8. Программа создания ограниченной национальной системы ПРО США
- •6. О ПОЛНОМ ЗАПРЕЩЕНИИ ЯДЕРНЫХ ИСПЫТАНИЙ
- •6.1. Проблема полного запрещения ядерных испытаний
- •6.2. Содержание Договора о ВЗЯИ 1996 года
- •6.3. Повышение эффективности контроля за соблюдением ДВЗЯИ на основе использования региональных малоапертурных микрогрупп, развернутых у границ контролируемого района
- •2. КОНЦЕПЦИЯ МИРНЫХ ЯДЕРНЫХ ВЗРЫВОВ
- •3. КЛАССИФИКАЦИЯ МИРНЫХ ЯДЕРНЫХ ВЗРЫВОВ, ПРОВЕДЕННЫХ НА ТЕРРИТОРИИ СССР
- •4. НАЧАЛО ПРОГРАММЫ ПРОВЕДЕНИЯ ЯДЕРНЫХ ВЗРЫВОВ В МИРНЫХ ЦЕЛЯХ В СССР
- •5. О РАЗРАБОТКЕ СПЕЦИАЛИЗИРОВАННЫХ ЗАРЯДОВ ДЛЯ ПРОВЕДЕНИЯ ЯДЕРНЫХ ВЗРЫВОВ В МИРНЫХ ЦЕЛЯХ
- •6. ТЕХНИЧЕСКОЕ ПРИМЕНЕНИЕ ПОДЗЕМНЫХ ЯДЕРНЫХ ВЗРЫВОВ
- •6.1. Глубинное сейсмическое зондирование земной коры
- •6.2. Экскавационные ядерные взрывы
- •6.3. Интенсификация добычи на нефтяных промыслах
- •6.4. Тушение и ликвидация неуправляемых газовых фонтанов
- •6.5. Создание подземных полостей для различного использования
- •6.6. Ядерно-взрывная наработка изотопов
- •6.7. Использование технологии создания полостей в каменной соли для решения задачи наработки изотопов
- •6.8. О возможности использования ядерно-взрывных технологий для решения глобальных экологических проблем современной цивилизации
- •6.8.2. Ядерно-взрывная технология захоронения высокоактивных отходов атомной энергетики
- •7. МЕРЫ ПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНОСТИ МИРНЫХ ЯДЕРНЫХ ВЗРЫВОВ
- •8. СОЗДАНИЕ ЯДЕРНОГО ОРУЖИЯ И ФУНДАМЕНТАЛЬНЫЕ НАУЧНЫЕ ИССЛЕДОВАНИЯ
- •8.1. Влияние ядерных оружейных программ на развитие фундаментальных исследований
- •8.2. Фундаментальные исследования в подземных ядерных испытаниях
- •8.3. Фундаментальные исследования, связанные с поражающими факторами ядерного взрыва
- •8.3.1. Электромагнитный импульс ядерного взрыва
- •8.3.2. Ударная волна ядерного взрыва
- •8.3.3. Радиоактивное загрязнение атмосферы и поверхности земли
- •8.3.4. Особенности высотного взрыва
- •8.4. Возможности ядерных технологий для решения некоторых фундаментальных задач
- •8.4.1. Разработка в США ядерного взрывного двигателя
- •8.4.2. Возможности использования ядерных взрывов для борьбы с астероидной опасностью
- •8.4.3. Проблема использования ядерных взрывов для изменения климата
- •9. ЯДЕРНЫЕ ВЗРЫВЫ В МИРНЫХ ЦЕЛЯХ И ДОГОВОР О ВСЕОБЪЕМЛЮЩЕМ ЗАПРЕЩЕНИИ ЯДЕРНЫХ ИСПЫТАНИЙ
- •ПРИЛОЖЕНИЕ К ГЛАВЕ 5. МИРНЫЕ ЯДЕРНЫЕ ВЗРЫВЫ СССР. ИСПОЛЬЗОВАНИЕ ЯДЕРНЫХ ВЗРЫВНЫХ ТЕХНОЛОГИЙ В ИНТЕРЕСАХ НАРОДНОГО ХОЗЯЙСТВА
- •1. СОЗДАНИЕ ГОСУДАРСТВЕННОЙ СИСТЕМЫ РАЗРАБОТКИ ЯДЕРНОГО ОРУЖИЯ
- •1.1. Начало атомного проекта
- •1.2.Создание технологической и промышленной базы атомного проекта
- •1.2.1.Разведка и добыча урана
- •1.2.2. Организация производства плутония
- •1.2.3. Организация производства высокообогащенного урана
- •1.3. Роль Госплана и НКВД в организации атомной промышленности
- •1.4. Кооперация организаций на начальной стадии атомного проекта
- •1.5. Расширение производственной инфраструктуры после испытания РДС-1
- •2. РАЗВИТИЕ ИНФРАСТРУКТУРЫ АТОМНОЙ ОТРАСЛИ
- •2.1. Организация Министерства среднего машиностроения
- •2.2. О развитии сырьевой базы Минатома
- •2.2.1. Работы по развитию технологий добычи урана.
- •2.2.2. Создание и развитие горнодобывающих урановых комбинатов.
- •2.3. Развитие инфраструктуры производства плутония
- •2.3.1. Производственное объединение «Маяк»
- •2.3.2. Сибирский химический комбинат
- •2.3.3. Красноярский горно-химический комбинат
- •2.4. Развитие урановых производств
- •2.4.1. Уральский электрохимический комбинат
- •2.4.2. Ангарский электролизный химический комбинат
- •2.4.3. Красноярский электрохимический завод
- •2.4.4. Кирово-Чепецкий химический комбинат
- •2.4.5. Новосибирский завод химических концентратов
- •2.4.6. Машиностроительный завод (г. Электросталь)
- •2.4.7. ПО «Чепецкий механический завод»
- •2.5. Серийное производство ядерных боеприпасов
- •2.5.1. Создание и развитие производства ядерных боеприпасов
- •2.5.2. Электромеханический завод «Авангард»
- •2.5.3. Предприятия по производству ядерных боеприпасов и их компонентов
- •Комбинат «Электрохимприбор»
- •Приборостроительный завод
- •Производственное объединение «Старт»
- •ПО «Машиностроительный завод «Молния»
- •Уральский электромеханический завод
- •2.6. Министерство обороны и атомный проект
- •2.6.1. Новоземельский испытательный полигон
- •2.6.2. Полигоны ВВС
- •2.6.3. Техническая инспекция
- •2.6.4. Специальная приемка
- •2.6.5. Обучение военных специалистов
- •2.6.6. Обеспечение безопасности ядерного оружия и Министерство обороны
- •2.7. Создание технологий производства и обращения с радиоактивными материалами
- •2.7.1. НПО «Радиевый институт» имени В.Г. Хлопина
- •2.7.2. ВНИИ неорганических материалов имени А.А. Бочвара
- •3. РЕОРГАНИЗАЦИЯ ГОСУДАРСТВЕННОЙ СТРУКТУРЫ АТОМНОЙ ОТРАСЛИ
- •3.1. Государственный Комитет СМ СССР по использованию атомной энергии
- •3.2. Создание НТС № 2
- •3.3. Преобразование МСМ в Государственный производственный комитет по среднему машиностроению
- •3.4. Министерство среднего машиностроения после 1965 года
- •3.5. Расцвет атомной отрасли в 1975–1986 годах
- •4.1. Образование Минатома России
- •4.2. Конверсия и реформирование атомной отрасли
- •4.3. Структура Минатома в новых экономических условиях
- •4.4. Структура ядерно-оружейного комплекса Минатома России
- •4.4.1. Департамент разработки и испытаний ядерных боеприпасов
- •4.4.2. Федеральный ядерный центр – ВНИИ экспериментальной физики (г. Саров)
- •4.4.4. Всероссийский НИИ автоматики им. Н.Л. Духова
- •4.4.5. Центр ядерного приборостроения – НИИ импульсной техники
- •4.4.6. НИИ измерительных систем
- •4.4.7. Институт стратегической стабильности
- •4.5.1. Общие подходы к обеспечению защиты ядерных материалов и объектов
- •4.5.2. Создание системы обеспечения атомной отрасли техническими средствами безопасности
- •4.6. Министры атомной отрасли
- •4.7. Кадровая политика атомной отрасли
- •4.8. Планы по сокращению ядерно-оружейного комплекса
- •1. НАЧАЛО ПУТИ. ПЕРВЫЕ РАБОТЫ ПО АТОМНОЙ ЭНЕРГЕТИКЕ
- •2. РАЗВИТИЕ ЯДЕРНЫХ ЭНЕРГЕТИЧЕСКИХ РЕАКТОРОВ
- •2.1. Развитие схемы водографитовых реакторов
- •2.2. Атомные электростанции с водографитовыми реакторами
- •2.3. Развитие реакторов ВВЭР
- •3. РЕАКТОРЫ НА БЫСТРЫХ НЕЙТРОНАХ
- •4. АТОМНАЯ ЭНЕРГЕТИКА СССР И РОССИИ
- •4.1. Атомные электростанции СССР
- •5. НЕКОТОРЫЕ НАПРАВЛЕНИЯ РАЗВИТИЯ ЯДЕРНЫХ ЭНЕРГЕТИЧЕСКИХ ТЕХНОЛОГИЙ
- •5.1. Малая ядерная энергетика
- •5.2. Атомные станции теплоснабжения
- •5.3. Разработка ЯЭУ для космических аппаратов
- •6. ОБЩИЕ ХАРАКТЕРИСТИКИ МИРОВОЙ ЭЛЕКТРОЭНЕРГЕТИКИ
- •6.1. Мировое энергопроизводство и роль ядерной энергетики
- •6.2. Запасы основных энергоносителей
- •6.3. Перспективы ядерной энергетики.
- •7. БУДУЩЕЕ АТОМНОЙ ОТРАСЛИ РОССИИ
- •7.1. Необходимость новой стратегии развития атомной отрасли
- •7.2. Перспективы атомной отрасли
- •7.3. Поставка ядерного топлива из оружейного урана в США и национальные интересы России
- •7.4. Энергетические технологии XXI века и ядерные топливные циклы
- •9. ИНИЦИАТИВА МИНАТОМА РОССИИ
- •Республика Саха (Якутия), 280 миллионов рублей.
- •Удмуртская Республика, 123 миллионов рублей.
- •Красноярский край, 14600 миллионов рублей.
- •Приморский край, 21300 миллионов рублей.
- •Архангельская область, 16800 миллионов рублей.
- •Пермская область, 3200 миллионов рублей.
- •Томская область, 10230 миллионов рублей.
- •Ульяновская область, 3260 миллионов рублей.
- •Челябинская область, 24500 миллионов рублей.
- •Брянская область, 350 миллионов рублей.
- •Калужская область, 3800 миллионов рублей.
- •Камчатская область, 8240 миллионов рублей.
- •Ленинградская область, 1830 миллионов рублей.
- •Мурманская область, 48300 миллионов рублей.
- •Санкт-Петербург, 830 миллионов рублей.
- •Москва, 6240 миллионов рублей.
- •3. ДОГОВОР МЕЖДУ РОССИЙСКОЙ ФЕДЕРАЦИЕЙ И СОЕДИНЕННЫМИ ШТАТАМИ АМЕРИКИ О СОКРАЩЕНИИ СТРАТЕГИЧЕСКИХ НАСТУПАТЕЛЬНЫХ ПОТЕНЦИАЛОВ
- •4. СОСТОЯНИЕ И ПЕРСПЕКТИВЫ РАЗВИТИЯ ЯДЕРНЫХ ВООРУЖЕНИЙ США
- •4.1. Межконтинентальные баллистические ракеты (МБР)
- •4.1.1. МБР Minuteman III
- •4.2. Атомные подводные лодки – носители БРПЛ
- •4.2.1. Состояние и развитие ПЛАРБ
- •4.2.2. БРПЛ Trident II
- •4.2.3. Боеголовки для БРПЛ
- •4.3. Стратегическая авиация
- •4.4. Нестратегические ядерные силы
- •4.5. Ядерный боезапас
- •5. ЯДЕРНЫЕ СИЛЫ РОССИИ К 2002 ГОДУ. СОСТОЯНИЕ И ТЕНДЕНЦИИ РАЗВИТИЯ
- •5.1. Межконтинентальные баллистические ракеты
- •5.2. Атомные подводные лодки с баллистическими ракетами
- •5.3. Бомбардировщики
- •5.4. Тактические ядерные силы
- •6. ИЗМЕНЕНИЯ ЯДЕРНОЙ СТРАТЕГИИ США
- •6.1. Обзорный доклад Министерства обороны США о состоянии ядерных вооружений
- •6.1.1. Вклад новой триады в достижение оборонных целей
- •«Гарантии»
- •«Отказ от намерений»
- •«Сдерживание»
- •«Поражение»
- •Командование, управление, планирование и разведка
- •Цели обороны и соответствующие требования к ядерному оружию
- •Определение численности ядерных сил
- •Развернутые и боеспособные ядерные силы
- •Численность американских ядерных сил
- •Переход к сокращению ядерных вооружений
- •6.1.2. Создание «новой триады»
- •Система ПРО
- •Гибкое планирование
- •Вопросы инфраструктуры Министерства обороны
- •Современная инфраструктура ядерно-оружейного производства США
- •Восстановление производственной инфраструктуры
- •Специалисты, обладающие уникальными знаниями
- •Поддержание уровня ядерных сил и их модернизация
- •Поражение укрепленных и заглубленных подземных объектов
- •Мобильные цели
- •Уничтожение химического и биологического оружия противника
- •Модернизация ядерных сил
- •Сокращение вооружений
- •Всеобъемлющее запрещение испытаний
- •Прозрачность
- •6.2. Ядерное оружие малой мощности и пересмотр ядерной стратегии США
- •7. ГЛОБАЛЬНОЕ ПАРТНЕРСТВО ПО УКРЕПЛЕНИЮ РЕЖИМА НЕРАСПРОСТРАНЕНИЯ
- •7.1. Инициатива «Группы восьми» на встрече в Кананаскисе в 2002 году
- •7.2. Нераспространение оружия массового уничтожения. Декларация «Группы восьми» на встрече в Эвиане в 2003 году
- •7.3. Глобальное партнерство против распространения оружия и материалов массового уничтожения. План действий «Группы восьми», выработанный на встрече в Эвиане в 2003 году
- •8. ПЕРЕЧЕНЬ ОСНОВНЫХ ПРОГРАММ ПО НЕРАСПРОСТРАНЕНИЮ, РЕАЛИЗУЕМЫХ В РОССИИ И СТРАНАХ СНГ ПРИ ПОДДЕРЖКЕ США
- •8.1. Программы Министерства обороны
- •Описание программы
- •Описание программы
- •Результаты работ по программе
- •Описание программы
- •Результаты работ по программе
- •Описание программы
- •Результаты работ по программе
- •Описание программы
- •Результаты работ по программе
- •Описание программы
- •Результаты работ по программе
- •Описание программы
- •Результаты работ по программе
- •Описание программы
- •Результаты работ по программе
- •Описание программы
- •Результаты работ по программе
- •Описание программы
- •Результаты работ по программе
- •Описание программы
- •Результаты работ по программе
- •8.2. Программы Министерства энергетики
- •Описание программы
- •Результаты работ по программе
- •Описание программы
- •Результаты работ по программе
- •Описание программы
- •Результаты работ по программе
- •Описание программы
- •Результаты работ по программе
- •Описание программы
- •Результаты работ по программе
- •Описание программы
- •Результаты работ по программе
- •Описание программы
- •Описание программы
- •Результаты работ по программе
- •Описание программы
- •Результаты работ по программе
- •Описание программы
- •8.3. Программы Государственного департамента
- •Описание программы
- •Результаты работ по программе
- •Описание программы
- •Результаты работ по программе
- •Описание программы
- •Описание программы
- •Описание программы
- •Результаты работ по программе
- •Примечание
- •Описание программы
- •8.4. Другие программы
- •Содействие в организации экспортного контроля (Министерство торговли США) (Export Control Assistance – Department of Commerce)
- •Описание программы
- •Результаты работ по программе
- •Описание программы
- •Результаты работ по программе
- •9. УГРОЗЫ ГЛОБАЛЬНЫХ КОНФЛИКТОВ
- •9.1. Демографический и экономический дисбаланс
- •9.2. Топливно-энергетический дисбаланс
- •9.3. Территориально-демографический дисбаланс
- •10. ПРЕДПОСЫЛКИ ДЛЯ ЯДЕРНОГО РАЗОРУЖЕНИЯ
- •11. ПРОБЛЕМЫ ОГРАНИЧЕНИЯ ЯДЕРНЫХ ВООРУЖЕНИЙ
- •12. СОСТОЯНИЕ РЕЖИМА НЕРАСПРОСТРАНЕНИЯ
- •12.1. Кризис режима нераспространения
- •12.2. Угроза ядерного терроризма
- •12.3. Угрозы технологического прогресса
- •12.4. Структурные особенности ядерных оружейных и ядерных гражданских программ
- •12.5. Производство энергетического плутония
- •13. ФОРМИРОВАНИЕ НОВОЙ СИСТЕМЫ СТРАТЕГИЧЕСКОЙ СТАБИЛЬНОСТИ
- •13.1. О термине «стратегическая стабильность»
- •13.2. О военно-технических критериях обеспечения стратегической стабильности
- •13.3. Некоторые особенности переходного периода
- •13.4. Новые подходы и укрепление двусторонних отношений России и США
- •13.5. Новая стратегическая стабильность
- •13.6. Конструктивные отношения в ядерной области
- •СПИСОК СОКРАЩЕНИЙ
- •ГЛОССАРИЙ
- •БИБЛИОГРАФИЯ
- •К главе 1
- •К главе 2
- •К главе 3
- •К главе 4
- •К главе 5
- •К главе 6
- •К главе 7
- •К главе 8
На основе разработанных моделей аварий были созданы методики испытаний ЯБП на аварийные воздействия, которые позволяют получить экспериментальное подтверждение расчетных оценок поведения конструкции ЯБП и радиационной обстановки на местности в случае диспергирования делящихся материалов.
В 1960–1963 годах на территории Семипалатинского испытательного полигона МО СССР
была реализована программа гидроядерных экспериментов. В этих опытах, в частности, проводилось изучение выпадения α-активности радионуклидов на поверхность грунта, определяемой ключевыми ядерными материалами, входящими в состав ЯЗ. Эксперименты проводились для макетов ЯЗ на основе плутония и на основе урана-235.
Опыты проводились в условиях различных редакций наземных взрывов. Направление скорости ветра изменялось практически во всем угле от 0 до 360°, а средняя скорость ветра варьировала от 2 до 15 м/сек. Фактические значения направления и скорости ветра определялись по данным прямых измерений, которые проводились в пункте, находившемся на расстоянии R = 2 км от испытательной площадки.
Таблица 3.4. Распределение гидроядерных экспериментов по годам
Тип |
1960 |
1961 |
1963 |
Всего |
|
|
|
|
|
На основе плутония |
6 |
5 |
13 |
24 |
|
|
|
|
|
На основе урана-235 |
6 |
8 |
0 |
14 |
|
|
|
|
|
Следует отметить, что результаты прямых измерений α-активности на оси следа облака имеют для отдельных экспериментов достаточно сложный нерегулярный характер. Вместе с тем, на основе большой совокупности опытов может быть получено эмпирическое эффективное среднее распределение выпадения активности. На основании опытных данных было получено также количество активности, выпавшей на заданном расстоянии от центра взрыва в направлении, перпендикулярном оси следа. Закон выпадения активности в этом направлении аппроксимировался распределением Гаусса exp(- y2/2σ2), в котором σ есть функция расстояния по оси следа до центра взрыва.
Результаты этих измерений представляют прямой интерес для оценок средних характеристик радиационной аварии ядерного боеприпаса с диспергированием плутония в условиях отсутствия ядерного взрыва. На их основе сделаны также заключения о возможных вариациях уровня выпадения активности по сравнению с характеристиками типичной средней аварии.
В период атмосферных ядерных испытаний в 1961–1962 годах на территории Семипалатинского испытательного полигона был проведен также ряд наземных ядерных испытаний с небольшим ядерным энерговыделением (уровень от нескольких тонн до нескольких сот тонн). В некоторых из этих опытов непосредственно после взрыва проводились измерения величины интенсивности γ-дозы, по которой могут быть восстановлены характеристики распределения выпадения активности продуктов деления. В предположении отсутствия фракционирования выпадения активности плутония и активности продуктов деления данные этих измерений также могут служить эмпирической основой для прогнозирования характерных последствий радиационных аварий с ядерными боеприпасами.
1.8.Исследования поражающих факторов ядерных взрывов
1.8.1.Общие характеристики поражающих факторов ядерных взрывов
Создание ядерного оружия и специфика физических процессов, протекающих при ядерном
(термоядерном) взрыве, определили особый характер поражающих факторов, сопровождающих его применение. Этот особый характер обусловлен качественно более высокой концентрацией энергии взрыва по сравнению с традиционными видами оружия (до 106 раз на единицу массы), существенно более высокой скоростью взрывного процесса (до 103 – 104 раз), наличием проникающего излучения взрыва (в том числе гамма и нейтронного излучения, сопровождающего взрыв), наработкой
130 |
Укрощениеядра |
|
|
значительного количества высокоактивных, достаточно долгоживущих радионуклидов, выпадение которых может определять большие зоны территории со значительным радиационным фоном.
Высокая массовая и объемная концентрация энергии взрыва при малых временах ее выделения определяют соотношение распределения энергии взрыва между кинетической и внутренней энергией продуктов взрыва боеприпаса с одной стороны и энергией первичного излучения, выходящего из боеприпаса. При взаимодействии этих видов энергии с атмосферой, окружающей заряд, в ней формируется зона, прогретая до температуры в несколько тысяч градусов («огненный шар»), излучающий заметную долю энергии взрыва в диапазоне спектральной прозрачности атмосферы («тепловое» излучение взрыва), которое является одним из основных поражающих факторов ядерного взрыва в атмосфере (воздушный, наземный, надводный взрывы). Одной из основных характеристик теплового излучения, как ПФЯВ, является распределение потока этой энергии на различных расстояниях, а также параметры его длительности.
Резкий перепад концентрации энергии, созданный взрывом, в слоях атмосферы, окружающих заряд, определяет перенос значительной части энергии взрыва в атмосфере в виде воздушной ударной волны. Важными характеристиками этого вида ПФЯВ является распределение максимально избыточного давления на фронте ударной волны на различных расстояниях от центра взрыва, а также импульса давления, создаваемого взрывом. Взаимодействие ударной волны с поверхностью грунта (воды) приводит к изменению ее характеристик вдоль земной поверхности.
С другой стороны, взаимодействие энергии взрыва, в том числе воздушной ударной волны, с грунтом, водой приводит к формированию ударной волны, распространяющейся в грунте, воде, создающей сейсмическое воздействие. Важной характеристикой этого вида ПФЯВ является как избыточное давление на фронте ударной волны, так и создаваемое смещение элементов нагруженной среды.
Вусловиях подземного, подводного взрыва перенос энергии осуществляется ударной волной, которая может воздействовать на заглубленные, подводные объекты, или объекты, находящиеся на поверхности.
Вверхних слоях атмосферы часть энергии первичного излучения ядерного взрыва может переноситься на значительные расстояния. К характеристикам этого вида ПФЯВ относится распределение потока энергии излучения на различных расстояниях, его спектральное распределение и параметры длительности.
Процесс деления ядер сопровождается наработкой избыточных нейтронов, которые в процессе взрыва выходят за пределы боеприпаса и распространяются в окружающих слоях атмосферы. Наработка избыточных нейтронов идет и при горении термоядерного горючего. Этот вид ПФЯВ характеризуется распределением потока и энергии нейтронов в зависимости от расстояния до центра взрыва.
Процесс деления ядер и взаимодействие нейтронов взрыва с некоторыми материалами приводит к наработке гамма-излучения, сопровождающего взрыв боеприпаса. Этот вид ПФЯВ характеризуется распределением потока энергии гамма-квантов в зависимости от расстояния до центра взрыва, а также параметрами длительности. При взаимодействии гамма-излучения взрыва с атмосферой возникает ток комптоновских электронов, который может приводить к формированию электромагнитного импульса ядерного взрыва.
При наземном ядерном взрыве или ядерном взрыве с небольшим заглублением происходит образование воронки выброса грунта в сильной степени деформирующей поверхность в районе эпицентра. Такой взрыв сопровождается выбросом в атмосферу значительных масс грунта, в основном выпадающих обратно в районе эпицентра взрыва, и частично переносимых (легкие фракции) атмосферными потоками до своего осаждения на значительных расстояниях от эпицентра. Фракции выброшенного взрывом грунта содержат радионуклиды, наработанные в ядерном взрыве (в частности, продукты деления ядер) и определяют при своем выпадении радиоактивное загрязнение местности. Облако, содержащее продукты взрыва, представляет собой зону повышенной радиации в атмосфере; такое облако формируется и при воздушном ядерном взрыве.
При надводном (подводном) взрыве происходит выброс значительных масс воды с ее последующим обрушением и формирование различных видов волн, распространяющихся вдоль поверх-
ности. Такой взрыв также сопровождается образованием радиоактивного облака с последующим выпадением радионуклидов.
1.8.2. Военно-технические возможности ядерных арсеналов и поражающие факторы
При большом разнообразии поражающих факторов ядерного взрыва естественно разнообразие и его воздействия на различные объекты военного и гражданского назначения, военную технику, человека, элементы среды обитания.
Следует иметь в виду, что ядерное оружие рассматривалось, как оружие двойного назначения:
•оружие, направленное на поражение компонент, группировок и средств обеспечения Вооруженных Сил противника (в том числе как оружие поля боя, оружие противодействия и т.д.);
•оружие поражения военно-экономического потенциала.
Впервом случае речь идет об оружии, направленном в первую очередь, для решения конкретных военно-тактических задач, а во втором случае – об оружии массового поражения, направленном на уничтожение систем жизнеобеспечения противостоящего государства (в рамках доктрины сдерживания – это гарантии ответного удара с неприемлемым для противника ущербом).
Естественно, что приоритет тех или иных задач определял выделение соответствующих поражающих факторов ядерного оружия, как основных видов воздействия, и требовал соответствующей оптимизации возможностей ядерного арсенала. Поскольку удельный вес указанных двух основных функций ядерного оружия изменялся со временем, то изменялась и относительная оценка роли тех или иных поражающих факторов и представлений о необходимой структуре ядерного арсенала.
Так, например, военное применение США ядерного оружия в 1945 году в Японии являлось демонстрацией оружия устрашения, способного в беспрецедентной для того времени степени разрушать крупные центры структуры государства.
В1953 году ядерный потенциал США насчитывал 1169 боезарядов с совокупным мегатоннажем в 73 Мт, и, по существу, он не мог определять исход возможного крупномасштабного столкновения между СССР и США. Однако в 1957 году США уже обладали ядерным потенциалом в 5543 боезаряда с совокупным мегатоннажем в 17500 Мт. Этот потенциал был достаточен для создания на территории СССР сплошной зоны разрушений общей площадью в 1,5 миллиона квадратных километров
исплошной зоны пожаров общей площадью более 2 миллионов квадратных километров. Площадь радиоактивного загрязнения с уровнем внешнего облучения более 300 рад, спустя сутки после взрыва, могла существенно превысить 10 миллионов квадратных километров. Практически это означало потенциальную возможность превращения территории СССР в радиоактивную пустыню.
Ядерный арсенал СССР в это время был на несколько порядков меньше, и он не представлял
вто время реального оружия устрашения для США как по своему объему, так и по возможностям средств доставки, и мог решать только конкретные задачи на театре военных действий или в отношении поражения ключевых объектов союзников США. Важной задачей для СССР в это время было уточнение возможных последствий массированного ядерного удара США по территории СССР, что требовало проведения конкретных исследований в ядерных испытаниях.
Вэто же время возникла задача по изучению возможностей, предоставляемых ядерным оружием в средствах противодействия, то есть исследования в интересах ядерной ПВО (позднее, ядерной ПРО), противокорабельных и противолодочных систем и т.д.
Очевидно, что это качественно иные задачи, чем разрушение основных элементов государства, и здесь определяющую роль могут играть иные поражающие факторы.
1.8.3.Воздействие поражающих факторов ядерного взрыва
Исследования характеристик поражающих факторов ядерного взрыва и их воздействия на
различные объекты начались в ядерных испытаниях СССР с первого ядерного взрыв 1949 года. Уже в этом испытании исследовалось воздействие ударной волны и теплового излучения ядерного взрыва на различные образцы военной техники и гражданских сооружений, а также характеристики радиоактивного загрязнения территории как в районе, прилегающем к эпицентру взрыва, так и на значительных расстояниях (сотни километров) вдоль траектории движения радиоактивного облака
132 |
Укрощениеядра |
|
|
взрыва. Эти исследования были продолжены в двух последующих испытаниях в 1951 году (наземный и воздушный взрывы), а также в мощном наземном взрыве 12 августа 1953 года. Уже в ходе испытаний в 1949 и 1951 году был сделан фундаментальный вывод о радикальном уменьшении радиоактивного загрязнения территории, как в эпицентре взрыва, так и на следе радиоактивного облака, при переходе от наземных ядерных взрывов к воздушным. Эти эксперименты заложили фундамент представлений о характеристиках воздействия ПФЯВ.
Работы были продолжены в 1954–1955 годах. В 1955 году в двух экспериментах 6 и 22 ноября 1955 года впервые изучалось воздействие мощных воздушных взрывов на различные военные и гражданские объекты. В экспериментах исследовалось также воздействие ПФЯВ на большом количестве подопытных животных (овцы). Масштабный характер имели работы, связанные с исследованием радиационного состояния территории и атмосферы.
В ядерных испытаниях этого периода исследовалось воздействие ядерного взрыва на траншеи и укрытия различного типа, блиндажи и огневые позиции разных видов, танки, артиллерийские орудия и установки, самолеты. В некоторых испытаниях исследовалось воздействие ядерного взрыва на элементы боевого оснащения и оборудования кораблей ВМФ. Это было связано с отсутствием возможности проведения таких работ в натурных условиях (полигон Новая Земля еще не был создан) и исследования проводились на суше в ядерных испытаниях на Семипалатинском полигоне.
Среди исследуемых гражданских объектов можно выделить здания промышленного типа, склады и хранилища, линии электропередач, мосты, железнодорожные пути, нефтяные вышки, элементы заводских сооружений. Широко исследовалось воздействие ядерных взрывов на жилые дома различных видов, типичных для условий СССР, и убежища для населения.
1.8.4. Войсковые учения и ядерные испытания
Следует отметить, что результаты исследования воздействия ядерного взрыва привели к выводу о возможности эффективных действий Вооруженных Сил на поле боя в условиях применения противником ядерного оружия. В этом контексте следует рассматривать и войсковые учения, проводившиеся на Тоцком полигоне МО СССР 14 сентября 1954 года, в ходе которых был произведен воздушный ядерный взрыв мощностью 40 кт. Взрыв был произведен на высоте, обеспечивающей незначительное радиоактивное загрязнение территории в эпицентре взрыва и на следе радиоактивного облака. В ходе этих учений принимало участие около 45000 военнослужащих. Это были единственные масштабные войсковые учения в условиях натурного ядерного взрыва.
Вто же время следует отметить, что подготовка и проведение атмосферных ядерных взрывов,
вкоторых участвовали сотни специалистов ядерных полигонов и других войсковых частей, конечно, также являлась практической подготовкой военнослужащих к действиям в условиях военного ядерного конфликта. В этой связи следует особо подчеркнуть значительный практический опыт, полученный экипажами тяжелых бомбардировщиков, принимавших участие в воздушных ядерных испытаниях при сбрасывании ядерного взрывного устройства в составе авиабомбы. При этом диапазон энерговыделения производимых взрывов изменялся от масштабов килотонны до десятков мегатонн. В приобретении этого практического опыта ВВС СССР, по-видимому, существенно опередили ВВС США.
Другим примером практической подготовки экипажей самолетов ВВС в условиях, моделирующих военные действия, можно рассматривать многократные полеты самолетов радиационной разведки вдоль движения радиоактивных облаков (в том числе и внутри облака), созданных при проведении ядерных испытаний.
Отметим, что масштабные войсковые учения в ходе ядерных испытаний проводились в период атмосферных испытаний и Соединенными Штатами. Так, в ходе двух ядерных испытаний 1946 года на атолле Бикини (операция Crossroads) с мощностью взрыва 23 кт каждый участвовало 42000 воен-
нослужащих. Один взрыв являлся воздушным взрывом на небольшой приведенной высоте (Н = 5,6 м/кт1/3), а второй – подводным взрывом на небольшой приведенной глубине (h = 1 м/кт1/3).
С 1951 по 1957 год на Невадском полигоне во время ядерных испытаний были проведены восемь этапов войсковых учений Desert Rock с участием в общей сложности не менее 55000 военнослужащих.