
Билеты по геодезии 1 семестр / Билет 42
.doc42 билет
3Cредняя квадратическая погрешность (СКП). Формулы Гаусса и Бесселя. Порядок матобработки ряда равноточных измерений.Предельная абсолютная и относительная погрешности.
Наилучшим критерием оценки точности измерений принято считать среднюю квадратическую погрешность (СКП) измерения, определяемую по формуле Гаусса:
где i=li-X (Х - истинное значение измеряемой величины, а li - результат измерения).
Так как, в большинстве случаях истинное значение неизвестно, то СКП определяют по формуле Бесселя:
где i=li-х (х - средняя арифметическое значение или вероятнейшее значение измеряемой величины, а li - результат измерения).
СКП арифметической середины:
Эта формула показывает, что СКП арифметической середины в n раз меньше СКП отдельного измерения.
На практике различают предельные и относительные погрешности. Теорией доказывается, а практикой подтверждается, что абсолютное большинство случайных погрешностей находится в интервале от 0 до m - 68% , от 0 до 2m - 95% , от 0 до 3m - 99.7%.
На практике за предельную погрешность принимают 2m, т.е. с вероятностью 95% можно утверждать, что случайные погрешности не превысят величины равной 2m. Если n<10 то i(пред)=tB . M, где tB - коэффициент Стьюдента (таблица)
Таблица коэффициентов Стьюдента
n |
tB |
n |
tB |
n |
tB |
2 |
4,53 |
5 |
2,65 |
8 |
2,37 |
3 |
3,31 |
6 |
2,52 |
9 |
2,32 |
4 |
2,87 |
7 |
2,43 |
10 |
2,28 |
Рассмотрим на примере как выполняется математическая обработка результатов ряда равноточных измерений. Пусть длина линии измерена шесть раз (см. таблицу). Необходимо найти вероятнейшее значение измеренной величины и оценить результаты измерений.
Матобработка ряда измерений одной и той же величины выполняется в следующей последовательности:
- определение вероятнейшего значения измеренной величины x=li/n;
-
оценка точности отдельного измерения
-
оценка точности арифметической середины
(вероятнейшего значения)
- определение окончательного результата L = x tBM.