Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
50
Добавлен:
31.05.2015
Размер:
184.83 Кб
Скачать

1.5. МЕХАНИЧЕСКАЯ РАБОТА И КИНЕТИЧЕСКАЯ ЭНЕРГИЯ

Понятие энергии. Механическая энергия. Работа - количественная мера изменения энергии. Работа равнодействующей сил. Работа сил в механике. Понятие мощности. Кинетическая энергия как мера механического движения. Связь изменения кинетической энергии с работой внутренних и внешних сил. Кинетическая энергия системы в различных системах отсчета. Теорема Кенига.

Энергия это универсальная мера различных форм движения и взаимодействия. Механи́ческая эне́ргия описывает сумму потенциальной и кинетической энергии, имеющихся в компонентах механической системы. Механическая энергия — это энергия, связанная с движением объекта или его положением, способность совершать механическую работу.

Работа силы это количественная характеристика процесса обмена энергией между взаимодействующими телами.

Пусть частица под действием силы совершает перемещение по некоторой траектории 1-2 (рис. 5.1). В общем случае сила в процессе

Рис. 5.1. Определение работы силы

движения частицы может изменяться как по модулю, так и по направлению. Рассмотрим, как показано на рис.5.1, элементарное перемещение , в пределах которого силу можно считать постоянной.

Действие силы на перемещении характеризуют величиной, равной скалярному произведению , которую называют элементарной работой силы на перемещении . Ее можно представить и в другом виде:

     

,

где - угол между векторами и - элементарный путь, проекция вектора на векторобозначена (рис. 5.1).

Итак, элементарная работа силы на перемещении

     

.

(5.1)

Величина - алгебраическая: в зависимости от угла между векторами силы и или от знака проекции вектора силы на вектор перемещения она может быть как положительной, так и отрицательной и, в частности, равной нулю, если т.е. . Единицей измерения работы в вивтеме СИ служит Джоуль, сокращенное обозначение Дж.

Суммируя (интегрируя) выражение (5.1) по всем элементарным участкам пути от точки 1 до точки 2, найдем работу силы на данном перемещении:

     

.

(5.2)

Выражению (5.2) можно придать наглядный геометрический смысл. Изобразим график как функцию положения частицы на траектории. Пусть, например, этот график имеет вид, показанный на рис. 5.2. Из этого рисунка

Рис. 5.2. Графический смысл работы сил

видно, что элементарная работа A численно равна площади заштрихованной полоски, а работа А на пути от точки 1 до точки 2 - площади фигуры, ограниченной кривой, ординатами 1 и 2 и осью s. При этом площадь фигуры над осью s берется со знаком плюс (она соответствует положительной работе), а площадь фигуры под осью s - со знаком минус (она соответствует отрицательной работе).

Рассмотрим примеры на вычисление работы. Работа упругой силы где - радиус-вектор частицы А относительно точки О (рис. 5.3).

Рис. 5.3. Работа упругой силы

Переместим частицу A, на которую действует эта сила, по произвольному пути из точки 1 в точку 2. Найдем сначала элементарную работу силы на элементарном перемещении :

     

.

Скалярное произведение где проекция вектора перемещения на вектор . Эта проекция равна приращению модуля вектора Поэтому и

     

Теперь вычислим работу данной силы на всем пути, т. е. проинтегрируем последнее выражение от точки 1 до точки 2:

     

(5.3)

Вычислим работу гравитационной (или аналогичной ей математически силы кулоновской) силы. Пусть в начале вектора (рис. 5.3) находится неподвижная точечная масса (точечный заряд). Определим работу гравитационной (кулоновской) силы при перемещении частицы А из точки 1 в точку 2 по произвольному пути. Сила, действующая на частицу А, может быть представлена так:

     

где параметр для гравитационного взаимодействия равен , а для кулоновского взаимодействия его значение равно . Вычислим сначала элементарную работу этой силы на перемещении

     

Как и в предыдущем случае, скалярное произведение поэтому

     

.

Работа же этой силы на всем пути от точки 1 до точки 2

     

(5.4)

 Рассмотрим теперь работу однородной силы тяжести . Запишем эту силу в виде где орт вертикальной оси z с положительным направлением обозначен (рис.5.4). Элементарная работа силы тяжести на перемещении

     

Рис. 5.4. Работа однородной силы тяжести

Скалярное произведение гдепроекция на орт равная - приращению координаты z. Поэтому выражение для работы приобретает вид

     

Работа же данной силы на всем пути от точки 1 до точки 2

     

(5.5)

Рассмотренные силы интересны в том отношении, что их работа, как видно из формул (5.3) - (5.5), не зависит от формы пути между точками 1 и 2, а зависит только от положения этих точек. Эта весьма важная особенность данных сил присуща, однако, не всем силам. Например, сила трения этим свойством не обладает: работа этой силы зависит не только от положения начальной и конечной точек, но и от формы пути между ними.

До сих пор речь шла о работе одной силы. Если же на частицу в процессе движения действуют несколько сил, результирующая которых то нетрудно показать, что работа результирующей силы на некотором перемещении равна алгебраической сумме работ, совершаемых каждой из сил в отдельности на том же перемещении. Действительно,

     

(5.6)

Введем в рассмотрение новую величину - мощность. Она используется для характеристики скорости, с которой совершается работа. Мощность, по определению, - это работа, совершаемая силой за единицу времени. Если за промежуток времени сила совершает работу , то мощность, развиваемая этой силой в данный момент времени, есть Учитывая, что , получим

     

.

(5.7)

Единица мощности в системе СИ - Ватт, сокращенное обозначение Вт.

     

Таким образом, мощность, развиваемая силой , равна скалярному произведению вектора силы на вектор скорости, с которой движется точка приложения данной силы. Как и работа, мощность - величина алгебраическая.

     

Зная мощность силы , можно найти и работу, которую совершает эта сила за промежуток времени t. В самом деле, представив подынтегральное выражение в (5.2) в виде получим

     

.

     

Следует также обратить внимание на одно весьма существенное обстоятельство. Когда говорят о работе (или мощности), то необходимо в каждом конкретном случае четко указывать или представлять себе, работа какой именно силы (или сил) имеется в виду. В ином случае, как правило, неизбежны недоразумения.

Рассмотрим понятие кинетической энергии частицы. Пусть частица массы т движется под действием некоторой силы (в общем случае эта сила может быть результирующей нескольких сил). Найдем элементарную работу, которую совершает эта сила на элементарном перемещении . Имея в виду, что и , запишем

     

.

     

Скалярное произведение где проекция вектора на направление вектора . Эта проекция равна - приращению модуля вектора скорости. Поэтому и элементарная работа

     

     

Отсюда видно, что работа результирующей силы идет на приращение некоторой величины стоящей в скобках, которую называют кинетической энергией частицы.

     

(5.8)

Таким образом, приращение кинетической энергии частицы при элементарном перемещении равно

     

(5.9)

 а при конечном перемещении из точки 1 в точку 2

     

(5.10)

т. е. приращение кинетической энергии частицы на некотором перемещении равно алгебраической сумме работ всех сил, действующих на частицу на том же перемещении. Если то т. е. кинетическая энергия частицы увеличивается; если же то то есть кинетическая энергия уменьшается.

     

Уравнение (5.9) можно представить и в другой форме, поделив обе части его на соответствующий промежуток времени dt:

     

(5.11)

Это значит, что производная кинетической энергии частицы по времени равна мощности N результирующей силы, действующей на частицу.

     

Теперь введем понятие кинетической энергии системы. Рассмотрим в некоторой системе отсчета произвольную систему частиц. Пусть частица системы имеет в данный момент кинетическую энергию . Приращение кинетической энергии каждой частицы равно, согласно (5.9), работе всех сил, действующих на эту частицу: Найдем элементарную работу, которую совершают все силы, действующие на все частицы системы:

     

,

где - суммарная кинетическая энергия системы. Заметим, что кинетическая энергия системы - величина аддитивная: она равна сумме кинетических энергий отдельных частей системы независимо от того, взаимодействуют они между собой или нет.

     

Итак, приращение кинетической энергии системы равно работе, которую совершают все силы, действующие на все частицы системы. При элементарном перемещении всех частиц

     

(5.12)

 а при конечном перемещении

     

(5.13)

Уравнение (5.12) можно представить и в другой форме, поделив обе части его на соответствующий промежуток времени dt. Имея при этом в виду что, получим

     

(5.14)

т. е. производная кинетической энергии системы по времени равна суммарной мощности всех сил, действующих на все частицы системы,

Теорема Кенига: кинетическую энергию K системы частиц можно представить как сумму двух слагаемых: а) кинетической энергии mVc2/2 воображаемой материальной точки, масса которой равна массе всей системы, а скорость совпадает со скоростью центра масс; б) кинетической энергии Kотн системы частиц, вычисленной в системе центра масс.

8

Соседние файлы в папке физика лекцыи