Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
53
Добавлен:
31.05.2015
Размер:
112.64 Кб
Скачать

Силу, действующую на неподвижное тело в направлении потока, называют лобовым сопротивлением, а силу, действующую на него в перпендикулярном направлении, - подъемной силой.

Cтационарное обтекание твердого тела потоком идеальной жидкости не вызывает появления подъемной силы и лобового сопротивления. Покажем это на примере симметричного, покоящегося относительно наблюдателя, тела. В данном случае линии тока относительно вертикальной оси, проходящей через центр масс тела перпендикулярно направлению потока жидкости, симметричны. Следовательно, для симметричных элементарных пространственных областей значения величины скоростей в трубке тока равны по величине. Тогда, исходя из уравнения Бернулли, давления в этих областях попарно равны и лобовое сопротивление отсутствует.

В виду симметрии задачи (но уже по отношению к оси, параллельной потоку) равна нулю и подъемная сила.

Рис. 13.3. Подъемная сила, действующая на вращающееся тело, помещенное в поток газа.

Эффект Магнуса. Иначе дело обстоит для вязкой жидкости или газа. Пусть тело, вращающееся относительно своего центра масс, погружено в газовый поток (см. рис. 13.3). Прилегающие к телу слои молекул участвуют в двух движениях: вращательном, обусловленном наличием вязкого трения между телом и газом, и поступательном, связанным с движением газа вдоль оси трубы. Исходя из векторного закона преобразования скоростей получается картина линий тока, изображенная на рис. 13.3, т. е. скорости потока молекул газа над твердым телом выше, чем под ним. Следовательно, в соответствии с уравнением Бернулли давление над телом будет ниже, чем под ним, и появляется подъемная сила.

Возникновение подъемной силы в результате циркуляции воздуха вокруг твердого тела называется эффектом Магнуса.

Рис. 13.4. Движение молекул воздуха около крыла самолета.

Наиболее характерным примером является наличие подъемной силы у крыла самолета при его движении относительно воздуха. Из-за характерной формы крыла вблизи его острой задней кромки в близлежащих слоях воздуха возникают вихревые воздушные потоки, причем направление вращения молекул происходит против часовой стрелки (см. рис. 13.4). Эти вихревые потоки постепенно нарастают и отрываются от крыла, но за счет наличия вязкого трения они заставляют вращаться по часовой стрелке вокруг поверхности крыла прилегающие к ней молекулы воздуха. Наличие циркуляции, обусловленной вязким трением, и приводит к возникновению подъемной силы.

Закон подобия.

Геометрическое, кинематическое, динамическое подобие.

Этап изучения зависимости интересующей величины от системы выбранных определяющих факторов может выполняться двумя путями: аналитическим и экспериментальным. Первый путь применим лишь для ограниченного числа задач и при том обычно лишь для упрощенных моделей явлений.

Другой путь, экспериментальный, в принципе может учесть многие факторы, но он требует научно обоснованной постановки опытов, планирования эксперимента, ограничения его объема необходимым минимумом и систематизации результатов опытов. При этом должно быть обосновано моделирование явлений.

Эти задачи позволяет решать так называемая теория подобия, т. е. подобия потоков несжимаемой жидкости.

Гидродинамическое подобие складывается из трех составляющих: геометрического подобия, кинематического и динамического.

Геометрическое подобие как известно из геометрии, представляет собой пропорциональность сходственных размеров и равенство соответствующих углов. Под геометрическим подобием понимают подобие тех поверхностей, которые ограничивают потоки, т. е. подобие русел (или каналов).

Отношение двух сходственных размеров подобных русел назовем линейным масштабом и обозначим эту величину через .Эта величина одинакова для подобных русел I и II.

Кинематическое подобие означает пропорциональность местных скоростей в сходственных точках и равенство углов, характеризующих направление этих скоростей:

Где – масштаб скоростей, одинаковый при кинематическом подобии.

Так как (где T – время,масштаб времени).

Из кинематического подобия вытекает геометрическое подобие линий тока. Очевидно, что для кинематического подобия требуется геометрическое подобие русел.

Динамическое подобие – это пропорциональность сил, действующих на сходственные объемы в кинематических подобных потоках и равенство углов, характеризующих направление этих сил.

В потоках жидкостей обычно действуют разные силы: силы давления, вязкости (трения), тяжести и др. Соблюдение их пропорциональности означает полное гидродинамическое подобие. Осуществление на практике полного гидродинамического подобия оказывается весьма затруднительным, поэтому обычно имеют дело с частичным (неполным) подобием, при котором соблюдается пропорциональность лишь основных, главных сил.

8

Соседние файлы в папке физика лекцыи