
- •TABLE OF CONTENTS
- •CHAPTER 1 Structure of Materials
- •CHAPTER 2 Composition of Materials
- •CHAPTER 3 Phase Diagram Sources
- •Compressive Strength
- •Yield Strength
- •Shear Strength
- •Hardness
- •Abrasion Resistance
- •Fracture Toughness
- •Tensile Modulus
- •Young’s Modulus
- •Elastic Modulus
- •Compression Modulus
- •Bulk Modulus
- •Torsion Modulus
- •Modulus of Rupture
- •Elongation
- •Area Reduction
- •Viscosity
- •Dissipation Factor
- •Dielectric Strength
- •Tangent Loss
- •Density
- •Heat of Fusion
- •Thermal Conductivity
- •Thermal Expansion
- •Compressive Strength
- •Yield Strength
- •Flexural Strength
- •Friction
- •Abrasion Resistance
- •Poisson’s Ratio
- •Elongation
- •Area Reduction
- •Dissipation Factor
- •Tangent Loss
- •Permittivity
- •Arc Resistance
- •Flammability

Table 428. SELECTING AREA REDUCTION OF TOOL STEELS
|
|
Area Reduction |
Type |
Condition |
(%) |
|
|
|
|
|
|
L6 |
Oil quenched from 845 •C and single tempered at 315 •C |
9 |
S1 |
Oil quenched from 930 •C and single tempered at 315 •C |
12 |
L2 |
Oil quenched from 855 •C and single tempered at 205 •C |
15 |
S1 |
Oil quenched from 930 •C and single tempered at 425 •C |
17 |
L6 |
Oil quenched from 845 •C and single tempered at 425 •C |
20 |
S5 |
Oil quenched from 870 •C and single tempered at 205 •C |
20 |
S7 |
Fan cooled from 940 •C and single tempered at 205 •C |
20 |
S1 |
Oil quenched from 930 •C and single tempered at 540 •C |
23 |
S5 |
Oil quenched from 870 •C and single tempered at 315 •C |
24 |
S7 |
Fan cooled from 940 •C and single tempered at 315 •C |
25 |
S5 |
Oil quenched from 870 •C and single tempered at 425 •C |
28 |
S7 |
Fan cooled from 940 •C and single tempered at 425 •C |
29 |
L2 |
Oil quenched from 855 •C and single tempered at 315 •C |
30 |
L6 |
Oil quenched from 845 •C and single tempered at 540 •C |
30 |
S5 |
Oil quenched from 870 •C and single tempered at 540 •C |
30 |
S7 |
Fan cooled from 940 •C and single tempered at 540 •C |
33 |
L2 |
Oil quenched from 855 •C and single tempered at 425 •C |
35 |
S1 |
Oil quenched from 930 •C and single tempered at 650 •C |
37 |
S5 |
Oil quenched from 870 •C and single tempered at 650 •C |
40 |
L2 |
Oil quenched from 855 •C and single tempered at 540 •C |
45 |
S7 |
Fan cooled from 940 •C and single tempered at 650 •C |
45 |
L6 |
Oil quenched from 845 •C and single tempered at 650 •C |
48 |
L2 |
Annealed |
50 |
S5 |
Annealed |
50 |
S1 |
Annealed |
52 |
L2 |
Oil quenched from 855 •C and single tempered at 650 •C |
55 |
L6 |
Annealed |
55 |
S7 |
Annealed |
55 |
|
|
|
Area Reduction in 50 mm or 2 in.
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p241, (1984).
©2001 CRC Press LLC
Shackelford, James F. & Alexander, W. “Selecting Electrical Properties”
Materials Science and Engineering Handbook
Ed. James F. Shackelford & W. Alexander Boca Raton: CRC Press LLC, 2001

CHAPTER 14 Selecting Electrical
Properties
List of Tables |
Resistivity |
|
Selecting Electrical Resistivity of Alloy Cast Irons |
|
Selecting Resistivity of Ceramics |
|
Selecting Volume Resistivity of Glass |
|
Selecting Volume Resistivity of Polymers |
Critical Temperature
Selecting Critical Temperature of
Superconductive Elements
Dissipation Factor
Selecting Dissipation Factor for Polymers at 60 Hz
Selecting Dissipation Factor for Polymers at 1 MHz
Dielectric
Selecting Dielectric Strength of Polymers
Selecting Dielectric Constants of Polymers at 60 Hz
Selecting Dielectric Constants of Polymers at 1 MHz
Tangent Loss
Selecting Tangent Loss in Glass
Selecting Tangent Loss in Glass by Temperature
Selecting Tangent Loss in Glass by Frequency
(continued)
©2001 CRC Press LLC
List of Tables |
Permittivity |
(Continued) |
Selecting Electrical Permittivity of Glass |
|
|
|
Selecting Electrical Permittivity of Glass by Frequency |
Arc Resistance
Selecting Arc Resistance of Polymers
©2001 CRC Press LLC

Table 429. SELECTING ELECTRICAL RESISTIVITY OF
ALLOY CAST IRONS
|
Electrical Resistivity |
|
Description |
(μΩ • m) |
|
|
|
|
|
|
|
Corrosion–Resistant High– Silicon iron |
0.50 |
|
Abrasion–Resistant Low–C White Iron |
0.53 |
|
Heat–Resistant Medium–silicon Ductile Iron |
0.58 to |
0.87 |
Abrasion–Resistant Martensitic nickel–chromium White Iron |
0.80 |
|
Corrosion–Resistant High–nickel gray iron |
1.0a |
|
Corrosion–Resistant High–nickel ductile iron |
1.0a |
|
Heat–Resistant High–nickel Ductile Iron (23 Ni) |
1.0a |
|
Heat–Resistant High–nickel Ductile Iron (20 Ni) |
1.02 |
|
Heat–Resistant Gray High–nickel Iron |
1.4 to |
1.7 |
Heat–Resistant Nickel–chromium–silicon Gray Iron |
1.5 to |
1.7 |
Heat–Resistant High–aluminum Gray Iron |
2.4 |
|
|
|
|
a Estimated.
Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984).
©2001 CRC Press LLC

Table 430. SELECTING RESISTIVITY OF CERAMICS
(SHEET 1 OF 5)
|
Temperature |
Resistivity |
|
Range of |
|
Ceramic |
Validity |
(Ω–cm) |
|
|
|
|
|
|
Boron Carbide (B4C) |
|
0.3–0.8 |
Titanium Monocarbide (TiC) |
|
0.3–0.8 |
Zircoium Oxide (ZrO2) (stabilized) |
2200˚C |
0.37 |
Zircoium Oxide (ZrO2) (stabilized) |
2000˚C |
0.59 |
Silicon Carbide (SiC) (with 1 wt% Al additive) |
|
0.8 |
Zircoium Oxide (ZrO2) (stabilized) |
1700˚C |
1.6 |
Zircoium Oxide (ZrO2) (stabilized) |
1300˚C |
9.4 |
Zircoium Oxide (ZrO2) (stabilized) |
1200˚C |
77 |
Silicon Carbide (SiC) |
20˚C |
102 –1012 |
Magnesium Oxide (MgO) |
1727˚C |
4x102 |
Zircoium Oxide (ZrO2) (stabilized) |
700˚C |
2300 |
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3) |
900˚C |
1.9x104 |
Silicon Carbide (SiC) (with 1 wt% B additive) |
|
2x104 |
Boron Nitride (BN) |
1000˚C |
3.1x104 |
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3) |
700˚C |
8.0x104 |
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3) |
900˚C |
3.5x105 |
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=1.8g/cm3) |
900˚C |
7.0x105 |
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3) |
500˚C |
7.7x105 |
Zirconium Diboride (ZrB2) |
liquid air temperature |
1.8x106 |
Aluminum Oxide (Al2O3) |
1000˚C |
2x106 |
|
|
|
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986–1991).
©2001 CRC Press LLC

Table 430. SELECTING RESISTIVITY OF CERAMICS
(SHEET 2 OF 5)
|
Temperature |
Resistivity |
|
Range of |
|
Ceramic |
Validity |
(Ω–cm) |
|
|
|
|
|
|
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3) |
700˚C |
3.0x106 |
Titanium Diboride (TiB2) (polycrystalline) |
liquid air temp. |
3.7x106 |
(100% dense, extrapolated) |
|
|
Zirconium Mononitirde (TiN) |
liquid air |
3.97x106 |
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=1.8g/cm3) |
700˚C |
4.7x106 |
Titanium Diboride (TiB2) (monocrystalline) |
|
|
(crystal length 5 cm, 39 deg. and 59 deg. |
|
|
orientation with respect to growth axis) |
room temp. |
6.6±0.2x106 |
Titanium Diboride (TiB2) (monocrystalline) |
|
|
(crystal length 1.5 cm, 16.5 deg. and 90 deg. |
|
|
orientation with respect to growth axis) |
room temp. |
6.7±0.2x106 |
Tantalum Monocarbide (TaC) (80% dense) |
4.2K |
8x106 |
Titanium Mononitirde (TiN) |
liquid air |
8.13x106 |
Titanium Diboride (TiB2) (polycrystalline) |
|
|
(100% dense, extrapolated) |
room temp. |
8.7–14.1x106 |
Titanium Diboride (TiB2) |
|
|
(polycrystalline) (85% dense) |
room temp. |
9.0x106 |
Zirconium Diboride (ZrB2) |
20 ˚C |
9.2x106 |
Tantalum Monocarbide (TaC) (80% dense) |
80K |
10x106 |
Hafnium Diboride (HfB2) |
room temp. |
10–12 x 106 |
Titanium Mononitirde (TiN) |
room temp. |
11.07–130x106 |
Zirconium Mononitirde (TiN) |
room temp. |
11.52–160x106 |
Tantalum Monocarbide (TaC) (80% dense) |
160K |
15x106 |
|
|
|
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986–1991).
©2001 CRC Press LLC

Table 430. SELECTING RESISTIVITY OF CERAMICS
(SHEET 3 OF 5)
|
Temperature |
Resistivity |
|
Range of |
|
Ceramic |
Validity |
(Ω–cm) |
|
|
|
|
|
|
Molybdenum Disilicide (MoSi2) |
–80˚C |
18.9x106 |
Magnesium Oxide (MgO) |
1000˚C |
0.2–1x108 |
Tantalum Monocarbide (TaC) (80% dense) |
240K |
20x106 |
Chromium Diboride (CrB2) |
|
21x106 |
Molybdenum Disilicide (MoSi2) |
22˚C |
21.5x106 |
Tantalum Monocarbide (TaC) (80% dense) |
300K |
25x106 |
Titanium Diboride (TiB2) |
|
|
(polycrystalline) (85% dense) |
room temp. |
26.5–28.4x106 |
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3) |
300˚C |
3.3x107 |
Tungsten Disilicide (WSi2) |
|
33.4–54.9x106 |
Hafnium Monocarbide (HfC) |
4.2K |
41x106 |
Hafnium Monocarbide (HfC) |
80K |
41x106 |
Zirconium Monocarbide (ZrC) |
4.2K |
41x106 |
Hafnium Monocarbide (HfC) |
160K |
45x106 |
Zirconium Monocarbide (ZrC) |
80K |
45x106 |
Zirconium Monocarbide (ZrC) |
160K |
47x106 |
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=1.8g/cm3) |
500˚C |
4.9x107 |
Hafnium Monocarbide (HfC) |
240K |
49x106 |
Zirconium Monocarbide (ZrC) |
240K |
53x106 |
Hafnium Monocarbide (HfC) |
300K |
60x106 |
Zirconium Monocarbide (ZrC) |
300K |
61–64x106 |
|
|
|
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986–1991).
©2001 CRC Press LLC

Table 430. SELECTING RESISTIVITY OF CERAMICS
(SHEET 4 OF 5)
|
Temperature |
Resistivity |
|
Range of |
|
Ceramic |
Validity |
(Ω–cm) |
|
|
|
|
|
|
Tantalum Diboride (TaB2) |
|
68 x106 |
Molybdenum Disilicide (MoSi2) |
1600˚C |
75–80x106 |
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3) |
500˚C |
9.0x107 |
Zirconium Monocarbide (ZrC) |
773K |
97x106 |
Mullite (3Al2O3 2SiO2) |
500˚C |
108 |
Zirconium Monocarbide (ZrC) |
1273K |
137x106 |
Zirconium Mononitirde (TiN) |
melting temp. |
320x106 |
Titanium Mononitirde (TiN) |
melting temp. |
340x106 |
Aluminum Oxide (Al2O3) |
700˚C |
5.0x108 |
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=1.8g/cm3) |
300˚C |
3.0x109 |
Boron Nitride (BN) (90% humidity) |
25˚C |
5.0x109 |
Mullite (3Al2O3 2SiO2) |
300˚C |
1010 |
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3) |
300˚C |
2.0x1010 |
Boron Nitride (BN) |
480˚C |
2.3x1010 |
Aluminum Oxide (Al2O3) |
500˚C |
6.3x1010 |
Boron Nitride (BN) (50% humidity) |
25˚C |
7.0x1010 |
Silicon Carbide (SiC) (with 2.0 wt% BN additive) |
|
1x1011 |
Aluminum Nitride (AlN) |
room temp. |
2x1011–1013 |
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3) |
100˚C |
2.5x1011 |
Boron Nitride (BN) (20% humidity) |
25˚C |
1.0x1012 |
|
|
|
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986–1991).
©2001 CRC Press LLC

Table 430. SELECTING RESISTIVITY OF CERAMICS
(SHEET 5 OF 5)
|
Temperature |
Resistivity |
|
Range of |
|
Ceramic |
Validity |
(Ω–cm) |
|
|
|
|
|
|
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=1.8g/cm3) |
100˚C |
1.0x1013 |
Aluminum Oxide (Al2O3) |
300˚C |
1x1013 |
Silicon Carbide (SiC) (with 1.6 wt% BeO additive) |
|
>1013 |
Trisilicon tetranitride (Si3N4) |
|
>1013 |
Boron Nitride (BN) |
25˚C |
1.7x1013 |
Aluminum Oxide (Al2O3) |
100˚C |
2x1013 |
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3) |
100˚C |
3.0x1013 |
Silicon Carbide (SiC) (with 1 wt% Be additive) |
|
3x1013 |
Silicon Carbide (SiC) (with 3.2 wt% BeO additive) |
|
4x1013 |
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=1.8g/cm3) |
25˚C |
1.0x1014 |
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3) |
25˚C |
1x1014 |
Mullite (3Al2O3 2SiO2) |
25˚C |
>1014 |
Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3) |
25˚C |
>1x1014 |
Beryllium Oxide (BeO) |
500˚C |
1–5x1015 |
Beryllium Oxide (BeO) |
300˚C |
>1015 |
Aluminum Oxide (Al2O3) |
25˚C |
>10x1014 |
Magnesium Oxide (MgO) |
27˚C |
1.3x1015 |
Beryllium Oxide (BeO) |
700˚C |
1.5–2x1015 |
Beryllium Oxide (BeO) |
1000˚C |
4–7x1015 |
Beryllium Oxide (BeO) |
25˚C |
>1017 |
Silicon Dioxide (SiO2) |
room temp. |
1018 |
|
|
|
Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986–1991).
©2001 CRC Press LLC

Table 431. SELECTING VOLUME RESISTIVITY OF GLASS
(SHEET 1 OF 13)
|
Temperature |
Resistivity |
Glass |
(˚C) |
(log Ω cm) |
|
|
|
|
|
|
SiO2–Na2O glass (57.5% mol Na2O) |
1300 |
–0.67 |
SiO2–Na2O glass (49.3% mol Na2O) |
1300 |
–0.61 |
SiO2–Na2O glass (57.5% mol Na2O) |
1200 |
–0.61 |
SiO2–Na2O glass (49.3% mol Na2O) |
1200 |
–0.56 |
SiO2–Na2O glass (44.5% mol Na2O) |
1300 |
–0.52 |
SiO2–Na2O glass (57.5% mol Na2O) |
1100 |
–0.52 |
SiO2–Na2O glass (49.3% mol Na2O) |
1100 |
–0.47 |
SiO2–Na2O glass (44.5% mol Na2O) |
1200 |
–0.46 |
SiO2–Na2O glass (39.5% mol Na2O) |
1400 |
–0.45 |
SiO2–Na2O glass (39.5% mol Na2O) |
1300 |
–0.39 |
SiO2–Na2O glass (44.5% mol Na2O) |
1100 |
–0.38 |
SiO2–Na2O glass (34.7% mol Na2O) |
1400 |
–0.33 |
SiO2–Na2O glass (39.5% mol Na2O) |
1200 |
–0.32 |
SiO2–Na2O glass (34.7% mol Na2O) |
1300 |
–0.27 |
SiO2–Na2O glass (39.5% mol Na2O) |
1100 |
–0.24 |
SiO2–Na2O glass (34.7% mol Na2O) |
1200 |
–0.20 |
SiO2–Na2O glass (29.7% mol Na2O) |
1400 |
–0.16 |
SiO2–Na2O glass (39.5% mol Na2O) |
1000 |
–0.13 |
SiO2–Na2O glass (34.7% mol Na2O) |
1100 |
–0.11 |
SiO2–Na2O glass (29.7% mol Na2O) |
1300 |
–0.10 |
SiO2–Na2O glass (29.7% mol Na2O) |
1200 |
–0.02 |
SiO2–Na2O glass (34.7% mol Na2O) |
1000 |
0.00 |
SiO2–Na2O glass (39.5% mol Na2O) |
900 |
0.00 |
SiO2–Na2O glass (29.7% mol Na2O) |
1100 |
0.08 |
|
|
|
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC

Table 431. SELECTING VOLUME RESISTIVITY OF GLASS
(SHEET 2 OF 13)
|
Temperature |
Resistivity |
Glass |
(˚C) |
(log Ω cm) |
|
|
|
|
|
|
SiO2–Na2O glass (34.7% mol Na2O) |
900 |
0.12 |
SiO2–Na2O glass (39.5% mol Na2O) |
800 |
0.13 |
SiO2–Na2O glass (24.8% mol Na2O) |
1200 |
0.17 |
SiO2–Na2O glass (29.7% mol Na2O) |
1000 |
0.20 |
SiO2–Na2O glass (24.8% mol Na2O) |
1100 |
0.26 |
SiO2–PbO glass (66.7% mol PbO) |
1000 |
0.26 |
SiO2–Na2O glass (19.9% mol Na2O) |
1300 |
0.30 |
SiO2–Na2O glass (39.5% mol Na2O) |
700 |
0.33 |
SiO2–Na2O glass (29.7% mol Na2O) |
900 |
0.34 |
SiO2–CaO glass (55.2% mol CaO) |
1600 |
0.34 |
SiO2–Na2O glass (19.9% mol Na2O) |
1200 |
0.38 |
SiO2–Na2O glass (24.8% mol Na2O) |
1000 |
0.38 |
SiO2–CaO glass (51.4% mol CaO) |
1618 |
0.38 |
SiO2–PbO glass (60% mol PbO) |
1000 |
0.40 |
B2O3–Na2O glass (32.8% mol Na2O) |
900 |
0.40 |
SiO2–CaO glass (55.2% mol CaO) |
1550 |
0.42–0.43 |
SiO2–CaO glass (51.4% mol CaO) |
1560 |
0.47 |
SiO2–Na2O glass (19.9% mol Na2O) |
1100 |
0.48 |
SiO2–CaO glass (51.4% mol CaO) |
1500 |
0.48–0.49 |
SiO2–PbO glass (66.7% mol PbO) |
900 |
0.50 |
SiO2–CaO glass (55.2% mol CaO) |
1499 |
0.51–0.53 |
SiO2–Na2O glass (24.8% mol Na2O) |
900 |
0.52 |
SiO2–Na2O glass (29.7% mol Na2O) |
800 |
0.52 |
SiO2–CaO glass (45.4% mol CaO) |
1622 |
0.52 |
|
|
|
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC

Table 431. SELECTING VOLUME RESISTIVITY OF GLASS
(SHEET 3 OF 13)
|
Temperature |
Resistivity |
Glass |
(˚C) |
(log Ω cm) |
|
|
|
|
|
|
SiO2–PbO glass (51.6% mol PbO) |
1200 |
0.54 |
SiO2–Na2O glass (15% mol Na2O) |
1500 |
0.56 |
SiO2–CaO glass (45.4% mol CaO) |
1585 |
0.58–0.59 |
SiO2–PbO glass (50.0% mol PbO) |
1200 |
0.60 |
B2O3–Na2O glass (32.8% mol Na2O) |
800 |
0.60 |
SiO2–Na2O glass (15% mol Na2O) |
1400 |
0.61 |
SiO2–Na2O glass (19.9% mol Na2O) |
1000 |
0.61 |
SiO2–CaO glass (45.4% mol CaO) |
1550 |
0.65 |
B2O3–Na2O glass (21.9% mol Na2O) |
1000 |
0.65 |
SiO2–Na2O glass (39.5% mol Na2O) |
600 |
0.67 |
SiO2–CaO glass (41.3% mol CaO) |
1600 |
0.67–0.68 |
SiO2–PbO glass (51.6% mol PbO) |
1100 |
0.70 |
B2O3–Na2O glass (27.5% mol Na2O) |
900 |
0.70 |
B2O3–CaO glass (40.0% mol CaO) |
1250 |
0.75 |
SiO2–Na2O glass (19.9% mol Na2O) |
900 |
0.76 |
SiO2–PbO glass (60% mol PbO) |
900 |
0.76 |
SiO2–CaO glass (41.3% mol CaO) |
1550 |
0.76 |
SiO2–Na2O glass (29.7% mol Na2O) |
700 |
0.78 |
SiO2–CaO glass (33.6% mol CaO) |
1600 |
0.79–0.80 |
SiO2–PbO glass (50.0% mol PbO) |
1100 |
0.80 |
SiO2–PbO glass (44.7% mol PbO) |
1300 |
0.82 |
SiO2–PbO glass (66.7% mol PbO) |
800 |
0.82 |
SiO2–CaO glass (41.3% mol CaO) |
1519 |
0.82 |
B2O3–CaO glass (33.3% mol CaO) |
1250 |
0.85 |
|
|
|
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC

Table 431. SELECTING VOLUME RESISTIVITY OF GLASS
(SHEET 4 OF 13)
|
Temperature |
Resistivity |
Glass |
(˚C) |
(log Ω cm) |
|
|
|
|
|
|
B2O3–Na2O glass (17.3% mol Na2O) |
1000 |
0.89 |
SiO2–Na2O glass (39.5% mol Na2O) |
550 |
0.91 |
SiO2–Na2O glass (10% mol Na2O) |
1600 |
0.92 |
SiO2–PbO glass (51.6% mol PbO) |
1000 |
0.92 |
SiO2–CaO glass (33.6% mol CaO) |
1560 |
0.93–0.94 |
B2O3–Na2O glass (21.9% mol Na2O) |
900 |
0.94 |
SiO2–Na2O glass (19.9% mol Na2O) |
800 |
0.96 |
SiO2–CaO glass (33.6% mol CaO) |
1500 |
0.97 |
SiO2–PbO glass (44.7% mol PbO) |
1200 |
0.98 |
B2O3–CaO glass (40.0% mol CaO) |
1150 |
0.98 |
B2O3–Na2O glass (27.5% mol Na2O) |
800 |
1.00 |
SiO2–PbO glass (50.0% mol PbO) |
1000 |
1.02 |
B2O3–Na2O glass (32.8% mol Na2O) |
700 |
1.02 |
SiO2–Na2O glass (10% mol Na2O) |
1500 |
1.03 |
SiO2–PbO glass (38.5% mol PbO) |
1300 |
1.04 |
SiO2–PbO glass (60% mol PbO) |
800 |
1.07 |
B2O3–CaO glass (33.3% mol CaO) |
1150 |
1.10 |
SiO2–PbO glass (44.7% mol PbO) |
1100 |
1.15 |
SiO2–Na2O glass (29.7% mol Na2O) |
600 |
1.16 |
B2O3–Na2O glass (17.3% mol Na2O) |
900 |
1.18 |
SiO2–PbO glass (51.6% mol PbO) |
900 |
1.20 |
B2O3–CaO glass (55.4% mol CaO) |
1150 |
1.22 |
SiO2–PbO glass (38.5% mol PbO) |
1200 |
1.26 |
B2O3–Na2O glass (21.9% mol Na2O) |
800 |
1.29 |
|
|
|
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC

Table 431. SELECTING VOLUME RESISTIVITY OF GLASS
(SHEET 5 OF 13)
|
Temperature |
Resistivity |
Glass |
(˚C) |
(log Ω cm) |
|
|
|
|
|
|
SiO2–Na2O glass (29.7% mol Na2O) |
550 |
1.31 |
SiO2–PbO glass (66.7% mol PbO) |
700 |
1.32 |
SiO2–Na2O glass (19.9% mol Na2O) |
700 |
1.34 |
SiO2–PbO glass (50.0% mol PbO) |
900 |
1.36 |
B2O3–Na2O glass (17.3% mol Na2O) |
850 |
1.39 |
SiO2–PbO glass (44.7% mol PbO) |
1000 |
1.40 |
B2O3–CaO glass (40.0% mol CaO) |
1050 |
1.40 |
B2O3–Na2O glass (12.1% mol Na2O) |
900 |
1.48 |
B2O3–CaO glass (33.3% mol CaO) |
1050 |
1.52 |
SiO2–PbO glass (38.5% mol PbO) |
1100 |
1.56 |
SiO2–PbO glass (51.6% mol PbO) |
800 |
1.62 |
SiO2–Na2O glass (19.9% mol Na2O) |
600 |
1.68 |
B2O3–CaO glass (55.4% mol CaO) |
1050 |
1.70 |
SiO2–PbO glass (60% mol PbO) |
650 |
1.72 |
SiO2–PbO glass (60% mol PbO) |
700 |
1.74 |
SiO2–PbO glass (44.7% mol PbO) |
900 |
1.82 |
B2O3–Na2O glass (12.1% mol Na2O) |
800 |
1.89 |
SiO2–PbO glass (50.0% mol PbO) |
800 |
1.90 |
SiO2–PbO glass (38.5% mol PbO) |
1000 |
1.94 |
B2O3–Na2O glass (3.63% mol Na2O) |
1000 |
2.00 |
B2O3–CaO glass (40.0% mol CaO) |
950 |
2.06 |
B2O3–CaO glass (33.3% mol CaO) |
950 |
2.25 |
SiO2 glass (0.5 atm Ar pressure) |
2100 |
2.30 |
B2O3–Na2O glass (3.63% mol Na2O) |
900 |
2.30 |
|
|
|
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC

Table 431. SELECTING VOLUME RESISTIVITY OF GLASS
(SHEET 6 OF 13)
|
Temperature |
Resistivity |
Glass |
(˚C) |
(log Ω cm) |
|
|
|
|
|
|
SiO2–Na2O glass (45% mol Na2O) |
350 |
2.35 |
SiO2–PbO glass (44.7% mol PbO) |
800 |
2.38 |
B2O3–Na2O glass (12.1% mol Na2O) |
700 |
2.43 |
B2O3–CaO glass (55.4% mol CaO) |
950 |
2.46 |
SiO2–PbO glass (38.5% mol PbO) |
900 |
2.47 |
SiO2–Na2O glass (48% mol Na2O) |
300 |
2.58 |
SiO2–Na2O glass (40% mol Na2O) |
350 |
2.66 |
SiO2–Na2O glass (45% mol Na2O) |
300 |
2.69 |
SiO2 glass (0.5 atm Ar pressure) |
2000 |
2.70 |
B2O3–Na2O glass (3.63% mol Na2O) |
800 |
2.70 |
SiO2–Na2O glass (35% mol Na2O) |
350 |
2.92 |
SiO2–Na2O glass (40% mol Na2O) |
300 |
2.97 |
B2O3–CaO glass (40.0% mol CaO) |
850 |
2.97 |
SiO2 glass (0.5 atm Ar pressure) |
1900 |
3.00 |
B2O3–CaO glass (33.3% mol CaO) |
850 |
3.10 |
SiO2–PbO glass (38.5% mol PbO) |
800 |
3.20 |
SiO2–Al2O3 glass (5.51% wt Al2O3) |
1900 |
3.20 |
SiO2–Al2O3 glass (10.86% wt Al2O3) |
1900 |
3.20 |
SiO2–Na2O glass (36% mol Na2O) |
300 |
3.22 |
SiO2–Al2O3 glass (2.83% wt Al2O3) |
1900 |
3.28 |
SiO2–Na2O glass (45% mol Na2O) |
250 |
3.30 |
SiO2–Na2O glass (33.3% mol Na2O) |
300 |
3.34 |
SiO2–Al2O3 glass (10.86% wt Al2O3) |
1700 |
3.34 |
SiO2–Al2O3 glass (5.51% wt Al2O3) |
1700 |
3.36 |
|
|
|
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC

Table 431. SELECTING VOLUME RESISTIVITY OF GLASS
(SHEET 7 OF 13)
|
Temperature |
Resistivity |
Glass |
(˚C) |
(log Ω cm) |
|
|
|
|
|
|
SiO2–Na2O glass (30% mol Na2O) |
350 |
3.46 |
SiO2–Al2O3 glass (2.83% wt Al2O3) |
1700 |
3.46 |
SiO2 glass (0.5 atm Ar pressure) |
1800 |
3.48 |
SiO2–Na2O glass (25% mol Na2O) |
350 |
3.52 |
SiO2–Al2O3 glass (10.86% wt Al2O3) |
1500 |
3.52 |
SiO2–B2O3 glass (2.74% wt B2O3) |
1900 |
3.56 |
SiO2–Al2O3 glass (5.51% wt Al2O3) |
1500 |
3.56 |
SiO2–Na2O glass (40% mol Na2O) |
250 |
3.59 |
SiO2–Na2O glass (30% mol Na2O) |
300 |
3.64–3.78 |
SiO2–Al2O3 glass (2.83% wt Al2O3) |
1500 |
3.67 |
SiO2–Al2O3 glass (10.86% wt Al2O3) |
1300 |
3.74 |
SiO2–B2O3 glass (2.74% wt B2O3) |
1700 |
3.76 |
SiO2–Al2O3 glass (5.51% wt Al2O3) |
1300 |
3.76 |
SiO2–Na2O glass (20% mol Na2O) |
350 |
3.80 |
SiO2–B2O3 glass (19.37% wt B2O3) |
1900 |
3.84 |
SiO2–Na2O glass (35% mol Na2O) |
250 |
3.85 |
B2O3–CaO glass (55.4% mol CaO) |
850 |
3.86 |
SiO2–Na2O glass (27% mol Na2O) |
300 |
3.94 |
SiO2–B2O3 glass (5.48% wt B2O3) |
1900 |
3.94 |
SiO2–Al2O3 glass (2.83% wt Al2O3) |
1300 |
3.94 |
SiO2–B2O3 glass (10.75% wt B2O3) |
1900 |
3.98 |
SiO2 glass (0.5 atm Ar pressure) |
1700 |
4.00 |
SiO2–B2O3 glass (19.37% wt B2O3) |
1700 |
4.00 |
SiO2–B2O3 glass (2.74% wt B2O3) |
1500 |
4.02 |
|
|
|
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC

Table 431. SELECTING VOLUME RESISTIVITY OF GLASS
(SHEET 8 OF 13)
|
Temperature |
Resistivity |
Glass |
(˚C) |
(log Ω cm) |
|
|
|
|
|
|
SiO2–Al2O3 glass (10.86% wt Al2O3) |
1100 |
4.02 |
SiO2–Na2O glass (25% mol Na2O) |
300 |
4.03 |
SiO2–Na2O glass (48% mol Na2O) |
150 |
4.09 |
SiO2–B2O3 glass (5.48% wt B2O3) |
1700 |
4.10 |
SiO2–Al2O3 glass (5.51% wt Al2O3) |
1100 |
4.15 |
SiO2–B2O3 glass (10.75% wt B2O3) |
1700 |
4.16 |
SiO2–B2O3 glass (19.37% wt B2O3) |
1500 |
4.22 |
SiO2–Al2O3 glass (2.83% wt Al2O3) |
1100 |
4.29 |
SiO2–B2O3 glass (5.48% wt B2O3) |
1500 |
4.30 |
SiO2–Na2O glass (15% mol Na2O) |
350 |
4.32 |
SiO2–Na2O glass (45% mol Na2O) |
150 |
4.33 |
SiO2–Na2O glass (20% mol Na2O) |
300 |
4.36–4.64 |
SiO2 glass (0.5 atm Ar pressure) |
1600 |
4.40 |
SiO2–PbO glass (38.5% mol PbO) |
700 |
4.40 |
SiO2–B2O3 glass (2.74% wt B2O3) |
1300 |
4.40 |
SiO2–B2O3 glass (10.75% wt B2O3) |
1500 |
4.40 |
SiO2–Na2O glass (30% mol Na2O) |
250 |
4.42 |
SiO2–B2O3 glass (19.37% wt B2O3) |
1300 |
4.48 |
SiO2–Na2O glass (25% mol Na2O) |
250 |
4.50 |
SiO2–Al2O3 glass (10.86% wt Al2O3) |
900 |
4.54 |
SiO2–B2O3 glass (5.48% wt B2O3) |
1300 |
4.56 |
SiO2–Na2O glass (40% mol Na2O) |
150 |
4.58 |
SiO2–Al2O3 glass (5.51% wt Al2O3) |
900 |
4.65 |
SiO2 glass (0.5 atm Ar pressure) |
1500 |
4.66 |
|
|
|
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC

Table 431. SELECTING VOLUME RESISTIVITY OF GLASS
(SHEET 9 OF 13)
|
Temperature |
Resistivity |
Glass |
(˚C) |
(log Ω cm) |
|
|
|
|
|
|
SiO2–B2O3 glass (10.75% wt B2O3) |
1300 |
4.69 |
SiO2–B2O3 glass (2.74% wt B2O3) |
1100 |
4.72 |
SiO2–Na2O glass (13% mol Na2O) |
300 |
4.77–4.79 |
SiO2–B2O3 glass (19.37% wt B2O3) |
1100 |
4.82 |
SiO2–Al2O3 glass (2.83% wt Al2O3) |
900 |
4.82 |
SiO2–Na2O glass (20% mol Na2O) |
250 |
4.85 |
SiO2–Na2O glass (36% mol Na2O) |
150 |
4.89 |
SiO2 glass |
1500 |
4.90 |
SiO2–Na2O glass (10% mol Na2O) |
350 |
4.96 |
SiO2 glass |
1400 |
5.00 |
SiO2–Na2O glass (33.3% mol Na2O) |
150 |
5.06 |
SiO2–B2O3 glass (10.75% wt B2O3) |
1100 |
5.08 |
SiO2 glass |
1300 |
5.15 |
SiO2–Na2O glass (44.2% mol Na2O) |
100 |
5.15 |
SiO2–B2O3 glass (5.48% wt B2O3) |
1100 |
5.16 |
SiO2–Na2O glass (10% mol Na2O) |
300 |
5.18 |
SiO2 glass |
1200 |
5.30 |
SiO2–Na2O glass (7.5% mol Na2O) |
300 |
5.30 |
SiO2–B2O3 glass (2.74% wt B2O3) |
900 |
5.30 |
SiO2–Al2O3 glass (5.51% wt Al2O3) |
700 |
5.34 |
SiO2–Al2O3 glass (10.86% wt Al2O3) |
700 |
5.38 |
SiO2–Na2O glass (15% mol Na2O) |
250 |
5.44 |
SiO2 glass |
1100 |
5.46 |
SiO2–Na2O glass (30% mol Na2O) |
150 |
5.48–5.75 |
|
|
|
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC

Table 431. SELECTING VOLUME RESISTIVITY OF GLASS
(SHEET 10 OF 13)
|
Temperature |
Resistivity |
Glass |
(˚C) |
(log Ω cm) |
|
|
|
|
|
|
B2O3 glass |
840 |
5.5 |
SiO2–B2O3 glass (5.48% wt B2O3) |
900 |
5.64 |
SiO2–B2O3 glass (19.37% wt B2O3) |
900 |
5.65 |
SiO2 glass |
1000 |
5.66 |
SiO2–B2O3 glass (10.75% wt B2O3) |
900 |
5.74 |
SiO2–Al2O3 glass (2.83% wt Al2O3) |
700 |
5.74 |
B2O3 glass |
780 |
5.8 |
SiO2–Na2O glass (27% mol Na2O) |
150 |
5.87 |
SiO2 glass |
900 |
5.90 |
SiO2–Na2O glass (25% mol Na2O) |
150 |
6.05 |
B2O3–CaO glass (55.4% mol CaO) |
750 |
6.13 |
SiO2–Na2O glass (10% mol Na2O) |
250 |
6.14 |
B2O3 glass |
730 |
6.2 |
SiO2 glass |
800 |
6.20 |
SiO2–Na2O glass (5% mol Na2O) |
350 |
6.37 |
SiO2–Na2O glass (20% mol Na2O) |
150 |
6.45–6.80 |
SiO2 glass |
700 |
6.56 |
SiO2–Na2O glass (30.2% mol Na2O) |
100 |
6.58 |
B2O3 glass |
680 |
6.6 |
B2O3 glass |
640 |
6.9 |
SiO2–Na2O glass (13% mol Na2O) |
150 |
6.90–6.96 |
SiO2 glass |
600 |
7.00 |
B2O3 glass |
600 |
7.3 |
SiO2–Na2O glass (5% mol Na2O) |
300 |
7.33–8.25 |
|
|
|
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC

Table 431. SELECTING VOLUME RESISTIVITY OF GLASS
(SHEET 11 OF 13)
|
|
Temperature |
Resistivity |
Glass |
(˚C) |
(log Ω cm) |
|
|
|
|
|
|
|
|
|
SiO2–Na2O glass |
(10% mol Na2O) |
150 |
7.35 |
SiO2–Na2O glass (7.5% mol Na2O) |
150 |
7.59 |
|
B2O3 glass |
560 |
7.6 |
|
SiO2–Na2O glass (5% mol Na2O) |
250 |
7.63 |
|
SiO2 glass |
500 |
7.80 |
|
SiO2–PbO glass |
(65% mol PbO) |
300 |
7.81 |
SiO2–PbO glass |
(60% mol PbO) |
300 |
8.11 |
SiO2–Na2O glass (15.1% mol Na2O) |
100 |
8.15 |
|
B2O3–Na2O glass (40% mol Na2O) |
100 |
8.46 |
|
SiO2 glass |
400 |
8.5–10.80 |
|
SiO2–CaO glass |
(50% mol CaO) |
400 |
8.70 |
SiO2–PbO glass |
(50% mol PbO) |
300 |
8.80–9.2 |
B2O3–Na2O glass (30% mol Na2O) |
100 |
8.82 |
|
B2O3–Na2O glass (40% mol Na2O) |
80 |
9.08 |
|
B2O3–Na2O glass (30% mol Na2O) |
80 |
9.43 |
|
SiO2–PbO glass |
(40% mol PbO) |
300 |
9.48 |
B2O3–Na2O glass (40% mol Na2O) |
60 |
9.73 |
|
SiO2–PbO glass |
(65% mol PbO) |
200 |
9.76 |
SiO2–Na2O glass (7.8% mol Na2O) |
100 |
9.89 |
|
SiO2–PbO glass (35% mol PbO) |
300 |
9.89 |
|
SiO2–PbO glass |
(60% mol PbO) |
200 |
10.04 |
SiO2–PbO glass (57.1% mol PbO) |
172 |
10.14 |
|
B2O3–Na2O glass (30% mol Na2O) |
60 |
10.14 |
|
SiO2–PbO glass (63.2% mol PbO) |
159 |
10.34 |
|
|
|
|
|
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC

Table 431. SELECTING VOLUME RESISTIVITY OF GLASS
(SHEET 12 OF 13)
|
Temperature |
Resistivity |
Glass |
(˚C) |
(log Ω cm) |
|
|
|
|
|
|
SiO2–PbO glass (30% mol PbO) |
300 |
10.44 |
SiO2–Na2O glass (5% mol Na2O) |
150 |
10.45–11.71 |
B2O3–Na2O glass (40% mol Na2O) |
40 |
10.48 |
SiO2–PbO glass (50% mol PbO) |
200 |
10.69 |
SiO2 glass |
250 |
11.0–13.6 |
B2O3–Na2O glass (20% mol Na2O) |
100 |
11.28 |
SiO2–PbO glass (40% mol PbO) |
200 |
11.54 |
SiO2–PbO glass (51.4% mol PbO) |
139 |
11.59 |
B2O3–Na2O glass (10% mol Na2O) |
100 |
11.61 |
SiO2–PbO glass (40.2% mol PbO) |
175 |
11.70 |
SiO2–PbO glass (47.3% mol PbO) |
149 |
11.74 |
B2O3–Na2O glass (30% mol Na2O) |
40 |
11.90 |
B2O3–Na2O glass (20% mol Na2O) |
80 |
12.05 |
SiO2–PbO glass (35% mol PbO) |
200 |
12.10 |
SiO2–CaO glass (50% mol CaO) |
300 |
12.2 |
B2O3–Na2O glass (10% mol Na2O) |
80 |
12.40 |
B2O3–Na2O glass (20% mol Na2O) |
60 |
12.91 |
SiO2–PbO glass (30% mol PbO) |
200 |
12.94 |
B2O3–CaO glass (33.3% mol CaO) |
300 |
13.16 |
B2O3–Na2O glass (10% mol Na2O) |
60 |
13.21 |
B2O3–CaO glass (33.3% mol CaO) |
250 |
13.50 |
B2O3–Na2O glass (16% mol Na2O) |
100 |
13.58 |
SiO2–PbO glass (33.8% mol PbO) |
135 |
13.68 |
SiO2–PbO glass (57.1% mol PbO) |
77 |
13.70 |
|
|
|
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC

Table 431. SELECTING VOLUME RESISTIVITY OF GLASS
(SHEET 13 OF 13)
|
Temperature |
Resistivity |
Glass |
(˚C) |
(log Ω cm) |
|
|
|
|
|
|
B2O3–Na2O glass (20% mol Na2O) |
40 |
13.86 |
B2O3–CaO glass (33.3% mol CaO) |
200 |
13.92 |
B2O3–Na2O glass (10% mol Na2O) |
40 |
14.20 |
SiO2–PbO glass (63.2% mol PbO) |
57 |
14.29 |
B2O3–Na2O glass (16% mol Na2O) |
80 |
14.32 |
B2O3–CaO glass (33.3% mol CaO) |
150 |
14.40 |
SiO2–PbO glass (47.3% mol PbO) |
79 |
14.48 |
SiO2–PbO glass (51.4% mol PbO) |
65 |
14.52 |
SiO2–PbO glass (40.2% mol PbO) |
78 |
14.85 |
B2O3–Na2O glass (16% mol Na2O) |
60 |
15.08 |
B2O3–Na2O glass (16% mol Na2O) |
40 |
15.89 |
SiO2–PbO glass (33.8% mol PbO) |
66 |
16.14 |
|
|
|
Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983
©2001 CRC Press LLC

Table 432. SELECTING VOLUME RESISTIVITY OF POLYMERS
(SHEET 1 OF 6)
|
Volume Resistivity |
|
(ASTM D257) |
Polymer |
(Ω • cm) |
|
|
|
|
Diallyl Phthalates; Molded: Dacron Filled |
102—2.5 x 104 |
Diallyl Phthalates; Molded: Asbestos Filled |
102—5 x 103 |
Diallyl Phthalates; Molded: Glass Fiber Filled |
104—5 x 104 |
Diallyl Phthalates; Molded: Orlon Filled |
6 x 104—6 x 106 |
Standard Epoxies: Cast Flexible |
9.1 x 105—6.7 x 109 |
Standard Epoxies; Reinforced: High Strength Laminate |
6.6 x 107—109 |
Molded Rubber Phenolic—Woodflour or Flock Filled |
108—1011 |
Phenolics; Molded: General: Woodflour and Flock Filled |
109—1013 |
Cellulose Acetate; Molded, Extruded; ASTM Grade: H6—1 |
1010—1013 |
Cellulose Acetate; Molded, Extruded; ASTM Grade: H4—1 |
1010—1013 |
Cellulose Acetate; Molded, Extruded; ASTM Grade: H2—1 |
1010—1013 |
Cellulose Acetate; ASTM Grade: MH—1, MH—2 |
1010—1013 |
Cellulose Acetate; ASTM Grade: MS—1, MS—2 |
1010—1013 |
Cellulose Acetate; Molded, Extruded; ASTM Grade: S2—1 |
1010—1013 |
Phenolics; Molded: High Shock: Chopped Fabric or Cord Filled |
>1010 |
Phenolics; Molded: Very High Shock: Glass Fiber Filled |
1010—1011 |
Phenolics: Molded: Arc Resistant—Mineral Filled |
1010—1012 |
Ureas; Molded: Cellulose Filled (ASTM Type 2) |
5—8 x 1010 |
Cellulose Acetate Butyrate; ASTM Grade: H4 |
1011—1014 |
Cellulose Acetate Butyrate; ASTM Grade: MH |
1011—1014 |
|
|
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC

Table 432. SELECTING VOLUME RESISTIVITY OF POLYMERS
(SHEET 2 OF 6)
|
Volume Resistivity |
|
(ASTM D257) |
Polymer |
(Ω • cm) |
|
|
|
|
Cellulose Acetate Butyrate; ASTM Grade: S2 |
1011—1014 |
Cellusose Acetate Propionate; ASTM Grade: 1 |
1011—1014 |
Cellusose Acetate Propionate; ASTM Grade: 3 |
1011—1014 |
Cellusose Acetate Propionate; ASTM Grade: 6 |
1011—1014 |
Phenolics: Molded: Rubber Phenolic—Chopped Fabric Filled |
1011 |
Phenolics: Molded: Rubber Phenolic—Asbestos Filled |
1011 |
Ureas; Molded: Alpha—Cellulose filled (ASTM Type l) |
0.5—5 x 1011 |
Melamines; Molded: Glass Fiber Filled |
1—7 x 1011 |
Phenolics; Molded: Shock: Paper, Flock, or Pulp Filled |
1—50 x 1011 |
Nylons: Type 8 |
1.5 x 1011 |
Polyvinyl Chloride & Copolymers: Nonrigid—Electrical |
4—300 x 1011 |
Melamines; Molded: Alpha Cellulose And Mineral Filled |
1012 |
Polyesters, Thermosets; Cast polyyester: Flexible |
1012 |
Melamines; Molded: Cellulose Electrical Filled |
1012—1013 |
Reinforced Polyester: High Strength (Glass Fibers) |
1 x 1012 —1 x 1013 |
Reinforced Polyester: Heat & Chemical Resistant (Asbestos) |
1 x 1012 —1 x 1013 |
Polyvinyl Chloride & Copolymers: Nonrigid—General |
1—700 x 1012 |
Polyesters, Thermosets; Cast polyyester: Rigid |
1013 |
PVC–Acrylic Alloy: PVC–Acrylic Sheet |
1—5 x 1013 |
Nylons: Type 11 |
2 x 1013 |
|
|
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC

Table 432. SELECTING VOLUME RESISTIVITY OF POLYMERS
(SHEET 3 OF 6)
|
Volume Resistivity |
|
(ASTM D257) |
Polymer |
(Ω • cm) |
|
|
|
|
Nylons; Molded, Extruded; Type 6: General purpose |
4.5 x 1013 |
Alkyds; Molded: Putty (Encapsulating) |
1014 |
Alkyds; Molded: Rope (General Purpose) |
1014 |
Alkyds; Molded: Glass reinforced (heavy duty parts) |
1014 |
Acrylics; Moldings: Grades 5, 6, 8 |
>1014 |
Alkyds; Molded: Granular (high speed molding) |
1014 — 1015 |
Nylons: Type 12 |
1014 —1015 |
6/6 Nylon: General purpose molding |
1014—1015 |
Polyacetal Copolymer: Standard |
1 x 1014 |
Polyacetal Copolymer: High Flow |
1.0 x 1014 |
Polyacetal Copolymer: 25% Glass Reinforced |
1.2 x 1014 |
High Performance Epoxies: Molded |
1.4—5.5 x 1014 |
Woven Glass Fabric/ Silicone Laminate |
2—5 x 1014 |
High Performance Epoxies: Cast, rigid |
2.10 x 1014 |
Nylons; Type 6: Cast |
2.6 x 1014 |
Nylons; Type 6: Glass fiber (30%) Reinforced |
2.8 x 1014—1.5 x 1015 |
Polyester; Thermoplastic Moldings: Asbestos—Filled Grade |
3 x 1014 |
Thermoset Carbonate: Allyl Diglycol Carbonate |
4 x 1014 |
Polyphenylene sulfide: 40% Glass Reinforced |
4.5 x 1014 |
Polyvinylidene— fluoride (PVDF) |
5 x 1014 |
Polyacetal Homopolymer: 20% Glass Reinforced |
5 x 1014 |
Granular (Silica) Reinforced Silicones |
5 x 1014 |
Fibrous (Glass) Reinforced Silicones |
9 x 1014 |
Polyvinyl Chloride & Copolymers: Rigid—Normal Impact |
1014—1016 |
|
|
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC

Table 432. SELECTING VOLUME RESISTIVITY OF POLYMERS
(SHEET 4 OF 6)
|
Volume Resistivity |
|
(ASTM D257) |
Polymer |
(Ω • cm) |
|
|
|
|
Vinylidene chloride |
1014—1016 |
Ceramic Reinforced (PTFE) |
1015 |
6/6 Nylon: General Purpose Extrusion |
1015 |
6/10 Nylon: General purpose |
1015 |
Acrylics; Cast Resin Sheets, Rods: General purpose, type II |
>1015 |
Acrylics; Cast Resin Sheets, Rods: General purpose, type I |
>1015 |
Polyethylenes; Molded, Extruded; Type II: Melt Index 20 |
>1015 |
Polyethylenes; Molded, Extruded; Type II: Melt Index l.0—1.9 |
>1015 |
Polyethylenes; Molded, Extruded; Type III: Melt Index 0.2—0.9 |
>1015 |
Polyethylenes; Type III: Melt Melt Index 0.l—12.0 |
>1015 |
Polyethylenes; Molded, Extruded; Type III: Melt Index 1.5—15 |
>1015 |
Polyethylenes; Molded, Extruded; Type III: High Molecular Weight |
>1015 |
Olefin Copolymers; Molded: EVA (ethylene vinyl acetate) |
0.15 x 1015 |
Chlorinated Polyvinyl Chloride |
1 x 1015—2 x 1016 |
Standard Epoxies: Molded |
1—5 x 1015 |
Polyacetal Homopolymer: Standard |
1 x 1015 |
ABS Resins; Molded, Extruded: High impact |
1—4 x 1015 |
ABS Resins; Molded, Extruded: Very high impact |
1—4 x 1015 |
ABS Resins; Molded, Extruded: Low temperature impact |
1—4 x 1015 |
ABS Resins; Molded, Extruded: Heat resistant |
1—5 x 1015 |
Polycarbonate (40% Glass Fiber Reinforced) |
1.4 x 1015 |
Polypropylene: Asbestos Filled |
1.5 x 1015 |
Polyester; Thermoplastic Moldings: General Purpose Grade |
2 x 1015 |
ABS Resins; Molded, Extruded: Medium impact |
2—4 x 1015 |
|
|
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC

Table 432. SELECTING VOLUME RESISTIVITY OF POLYMERS
(SHEET 5 OF 6)
|
Volume Resistivity |
|
(ASTM D257) |
Polymer |
(Ω • cm) |
|
|
|
|
Olefin Copolymers; Molded: EEA (ethylene ethyl acrylate) |
2.4 x 1015 |
6/6 Nylon; Molded, Extruded: Glass Fiber Reinforced |
2.6—5.5 x 1015 |
Polymides: Unreinforced |
4 x 1015 |
PVC–Acrylic Alloy: PVC–Acrylic Injection Molded |
5 x 1015 |
Standard Epoxies: Cast Rigid |
6.1 x 1015 |
Reinforced Polyester Sheet Molding, General Purpose |
6.4 x 1015 —2.2 x 1016 |
Polymides: Glass Reinforced |
9.2 x 1015 |
Olefin Copolymers; Molded: Ionomer |
10 x 1015 |
Styrene Acrylonitrile (SAN) |
>1016 |
Epoxy Novolacs: Cast, rigid |
>1016 |
Olefin Copolymers; Molded: Polyallomer |
>1016 |
Polystyrenes; Molded: General Purpose |
>1016 |
Polystyrenes; Molded: Medium Impact |
>1016 |
Polystyrenes; Molded: High Impact |
>1016 |
Polyester; Thermoplastic Moldings: General Purpose Grade |
1—4 x 1016 |
Chlorinated Polyether |
1.5 x 1016 |
Polypropylene: Glass Reinforced |
1.7 x 1016 |
Acrylics; Moldings: High Impact Grade |
2.0 x 1016 |
Polycarbonate |
2.1 x 1016 |
ABS–Polycarbonate Alloy |
2.2 x 1016 |
Polyester; Thermoplastic Moldings: Glass Reinforced Grades |
3.2—3.3 x 1016 |
Polyarylsulfone |
3.2—7.71 x 1016 |
Polyester Moldings: Glass Reinforced Self Extinguishing |
3.4 x 1016 |
Polystyrenes; Molded: Glass Fiber -30% Reinforced |
3.6 x 1016 |
|
|
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC

Table 432. SELECTING VOLUME RESISTIVITY OF POLYMERS
(SHEET 6 OF 6)
|
Volume Resistivity |
|
(ASTM D257) |
Polymer |
(Ω • cm) |
|
|
|
|
Polypropylene: Flame Retardant |
4 x 1016—1017 |
Glass Fiber (30%) Reinforced SAN |
4.4 x 1016 |
Phenylene Oxides (Noryl): Standard |
5 x 1016 |
Phenylene Oxides: SE—100 |
1017 |
Phenylene Oxides: SE—1 |
1017 |
Phenylene Oxides: Glass Fiber Reinforced |
1017 |
Phenylene Oxides (Noryl): Glass Fiber Reinforced |
1017 |
Polypropylene: High Impact |
1017 |
Polypropylene: General Purpose |
>1017 |
Polyethylenes; Molded, Extruded; Type I: Melt Index 0.3—3.6 |
1017—1019 |
Polyethylenes; Molded, Extruded; Type I: Melt Index 6—26 |
1017—1019 |
Polyethylenes; Molded, Extruded; Type I: Melt Index 200 |
1017—1019 |
Polytrifluoro Chloroethylene (PTFCE), Molded,Extruded |
1018 |
Polytetrafluoroethylene (PTFE), Molded,Extruded |
>1018 |
Fluorinated Ethylene Propylene (FEP) |
>2 x 1018 |
|
|
Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988.
©2001 CRC Press LLC

Table 433. SELECTING CRITICAL TEMPERATURE OF
SUPERCONDUCTIVE ELEMENTS (SHEET 1 OF 2)
Element |
Tc(K) |
|
|
|
|
W |
0.0154 |
Be |
0.026 |
Ir |
0.11-0.14 |
Ti |
0.39 |
Ru |
0.493 |
Cd |
0.518-0.52 |
Zr |
0.53 |
Zr (ω) |
0.65 |
Os |
0.655 |
Zn |
0.875 |
Mo |
0.916 |
Ga |
1.0833 |
Al |
1.175 |
Th |
1.39 |
Pa |
1.4 |
Re |
1.697 |
Ti |
2.332-2.39 |
Sb |
2.6-2.7a |
In |
3.405 |
Sn |
3.721 |
Hg (β) |
3.949 |
Hg (α) |
4.154 |
Ta |
4.47 |
La (α) |
4.88 |
|
|
a Metastable.
Source: data from Roberts, B. W., Properties of Selected Superconductive Materials - 1974 Supplement, NBS Technical Note 825, National Bureau of Standards, U.S. Government Printing Office, Washington,D.C., 1974, 10.
©2001 CRC Press LLC

Table 433. SELECTING CRITICAL TEMPERATURE OF
SUPERCONDUCTIVE ELEMENTS (SHEET 2 OF 2)
Element |
Tc(K) |
|
|
|
|
V |
5.43-5.31 |
Ga (β) |
5.90-6.2 |
La (β) |
6.00 |
Pb |
7.23 |
Ga (γ) |
7.62 |
Tc |
7.73-7.78 |
Ga (δ) |
7.85 |
Nb |
9.25 |
|
|
a Metastable.
Source: data from Roberts, B. W., Properties of Selected Superconductive Materials - 1974 Supplement, NBS Technical Note 825, National Bureau of Standards, U.S. Government Printing Office, Washington,D.C., 1974, 10.
©2001 CRC Press LLC