
- •Foreword
- •1. Introduction
- •2. Culture Shock
- •3. Preliminaries
- •Notation Used in This Book
- •Terminology
- •Sentences (statements)
- •Word Formation (tokenizing rules)
- •Numbers
- •Characters
- •Valence of Verbs (Binary and Unary Operators)
- •How Names (Identifiers) Get Assigned
- •Order of Evaluation
- •How Names Are Substituted
- •What a verb (function) looks like
- •Running a J program
- •The Execution Window; Script Windows
- •Names Defined at Startup
- •Step-By-Step Learning: Labs
- •J Documentation
- •Getting Help
- •4. A First Look At J Programs
- •Average Daily Balance
- •Calculating Chebyshev Coefficients
- •5. Declarations
- •Arrays
- •Cells
- •Phrases To Memorize
- •Constant Lists
- •Array-creating Verbs
- •6. Loopless Code I—Verbs Have Rank
- •Examples of Implicit Loops
- •The Concept of Verb Rank
- •Verb Execution—How Rank Is Used (Monads)
- •Controlling Verb Execution By Specifying a Rank
- •Examples Of Verb Rank
- •Negative Verb Rank
- •Verb Execution—How Rank Is Used (Dyads)
- •When Dyad Frames Differ: Operand Agreement
- •Order of Execution in Implied Loops
- •A Mistake To Avoid
- •7. Starting To Write In J
- •8. More Verbs
- •Arithmetic Dyads
- •Boolean Dyads
- •Min and Max Dyads
- •Arithmetic Monads
- •Boolean Monad
- •Operations on Arrays
- •9. Loopless Code II—Adverbs / and ~
- •Modifiers
- •The Adverb Monad u/
- •The adverb ~
- •10. Continuing to Write in J
- •11. Boxing (structures)
- •Terminology
- •Boxing As an Equivalent For Structures In C
- •12. Compound Verbs
- •Verb Sequences—u@:v and u@v
- •Making a Monad Into a Dyad: The Verbs [ and ]
- •Making a Dyad Into a Monad: u&n and m&v
- •13. Empty Operands
- •Execution On a Cell Of Fills
- •Empty cells
- •If Fill-Cells Are Not Enough
- •14. Loopless Code III—Adverbs \ and \.
- •15. Verbs for Arithmetic
- •Dyads
- •Monads (all rank 0)
- •16. Loopless Code IV
- •A Few J Tricks
- •Power/If/DoWhile Conjunction u^:n and u^:v
- •Tie and Agenda (switch)
- •17. More Verbs For Boxes
- •Dyad ; (Link) And Monad ; (Raze)
- •Dyad { Revisited: the Full Story
- •Split String Into J Words: Monad ;:
- •Fetch From Structure: Dyad {::
- •Report Boxing Level: Monad L.
- •18. Verb-Definition Revisited
- •What really happens during m :n and verb define
- •Compound Verbs Can Be Assigned
- •Dual-Valence verbs: u :v
- •The Suicide Verb [:
- •Multi-Line Comments Using 0 :0
- •Final Reminder
- •The Obverse u^:_1
- •Apply Under Transformation: u&.v and u&.:v
- •Defined obverses: u :.v
- •An observation about dyadic verbs
- •20. Performance: Measurement & Tips
- •Timing Individual Sentences
- •Compounds Recognized by the Interpreter
- •Use Large Verb-Ranks! and Integrated Rank Support
- •Shining a Light: The J Performance Monitor
- •21. Input And Output
- •Foreigns
- •File Operations 1!:n; Error Handling
- •Treating a File as a Noun: Mapped Files
- •Format Data For Printing: Monad And Dyad ":
- •Format an Array: 8!:n
- •Format binary data: 3!:n
- •printf, sprintf, and qprintf
- •Convert Character To Numeric: Dyad ".
- •22. Calling a DLL Under Windows
- •Memory Management
- •Aliasing of Variables
- •23. Socket Programming
- •Asynchronous Sockets and socket_handler
- •Names and IP Addresses
- •Connecting
- •Listening
- •Other Socket Verbs
- •24. Loopless Code V—Partitions
- •Find Unique Items: Monad ~. and Monad ~:
- •Apply On Subsets: Dyad u/.
- •Apply On Partitions: Monad u;.1 and u;.2
- •Apply On Specified Partitions: Dyad u;.1 and u;.2
- •Apply On Subarray: Dyad u;.0
- •Apply On All Subarrays: Dyad u;.3 and u;._3
- •Extracting Variable-Length Fields Using ^: and ;.1
- •Example: Combining Adjacent Boxes
- •25. When Programs Are Data
- •Calling a Published Name
- •Using the Argument To a Modifier
- •Invoking a Gerund: m`:6
- •Passing the Definition Of a Verb: 128!:2 (Apply)
- •Passing an Executable Sentence: Monad ". and 5!:5
- •26. Loopless Code VI
- •28. Modifying an array: m}
- •Monad I.—Indexes of the 1s in a Boolean Vector
- •29. Control Structures
- •while./do./end. and whilst./do./end.
- •if./do./else./end., if./do./elseif./do./end.
- •try./catch./catcht./end. and throw.
- •return.
- •assert.
- •30. Modular Code
- •Locales And Locatives
- •Assignment
- •Name Lookup
- •Changing The Current Locale
- •The Shared Locale 'z'
- •Using Locales
- •31. Writing Your Own Modifiers
- •Modifiers That Do Not Refer To x. Or y.
- •Modifiers That Refer To x. Or y.
- •32. Applied Mathematics in J
- •Complex Numbers
- •Matrix Operations
- •Calculus: d., D., D:, and p..
- •Taylor Series: t., t:, and T.
- •Hypergeometric Function with H.
- •Sparse Arrays: Monad and Dyad $.
- •Random Numbers: ?
- •Computational Addons
- •Useful Scripts Supplied With J
- •33. Elementary Mathematics in J
- •Verbs for Mathematics
- •Extended Integers, Rational Numbers, and x:
- •Factors and Primes: Monad p:, Monad and Dyad q:
- •Permutations: A. and C.
- •34. Graphics
- •Plot Package
- •2D Graphics: the gl2 Library
- •Displaying Tabular Data: the Grid Control
- •3D Graphics: OpenGL
- •35. Odds And Ends
- •Dyad # Revisited
- •Boxed words to string: Monad ;:^:_1
- •Spread: #^:_1
- •Choose From Lists Item-By-Item: monad m}
- •Recursion: $:
- •Make a Table: Adverb dyad u/
- •Cartesian Product: Monad {
- •Boolean Functions: Dyad m b.
- •Operations Inside Boxes: u L: n, u S: n
- •Comparison Tolerance !.f
- •Right Shift: Monad |.!.f
- •Generalized Transpose: Dyad |:
- •Monad i: and Dyad i:
- •Fast String Searching: s: (Symbols)
- •Fast Searching: m&i.
- •CRC Calculation
- •Unicode Characters: u:
- •Window Driver And Form Editor
- •Tacit Programming
- •36. Tacit Programs
- •37. First Look At Forks
- •38. Parsing and Execution I
- •39. Parsing and Execution II
- •The Parsing Table
- •Examples Of Parsing And Execution
- •Undefined Words
- •40. Forks, Hooks, and Compound Adverbs
- •Tacit and Compound Adverbs
- •Referring To a Noun In a Tacit Verb
- •41. Readable Tacit Definitions
- •Flatten a Verb: Adverb f.
- •Special Verb-Forms Used in Tacit Definitions
- •43. Common Mistakes
- •Mechanics
- •Programming Errors
- •44. Valedictory
- •45. Glossary
- •46. Error Messages
- •47. Index
Fast String Searching: s: (Symbols)
If you find your program taking a lot of time matching strings, you can create symbols representing the strings and then match the symbols rather than the strings themselves. The interpreter uses special code to make symbol-matching very fast.
Symbol is an atomic data type (like numeric, literal, and box). In a noun of the symbol type, each atom represents a boxed character string. You create a symbol with monad s: which has infinite rank. s: y takes an array of boxed strings y and creates an array of symbols of the same shape as y :
]sym =. s: 2 2$'abc';'def';'ghi';'jk' `abc `def
`ghi `jk $sym
2 2
The '`' characters are a clue that sym is an array of symbols. The value of the top-left atom of sym is not '`abc' or 'abc'; it is a value understood only by the interpreter. The interpreter chooses to display the text associated with the symbol, but that text is actually stored in the interpreter's private memory.
y in s: y can be a character string which is chopped into pieces using the leading character as a separator; each piece is then converted to a symbol. This is a handy way of creating a short list of symbols:
s: '`abc`ghi' `abc `ghi
Symbols can be operands of any verb that does not perform arithmetic; in addition, comparison between symbols is allowed with 'less than' defined to mean 'earlier in alphabetical order'.
a =. s: '`abc`def`ghi`jk' defines a list of 4 symbols.
a i. s:<'ghi'
2
We create a symbol to represent 'ghi' and find that in the list. a i. <'ghi'
4
Note: the boxed string <'ghi' is not a symbol, so it is not found in the list.
Dyad s: has a number of forms for operating on symbols. The only one of interest to us here is 5 s: y which converts each symbol in y to its corresponding boxed string:
5 s: 3 1 { a +--+---+ |jk|def| +--+---+
When a string is converted to a symbol, the interpreter allocates internal resources to hold the string's value and other information. There is no way to tell the interpreter to free the resources for a single string; this can be a problem if your symbol table is large and changes dynamically. It is possible to clear the entire symbol table (using
215
y=.0 s: 10 and 10 s: y), but doing so invalidates any symbols previously created by s: y .
If you would like to do high-speed matching but what you want to match is not a string, consider converting to strings using 5!:5 <'y' which converts the variable named y to string form.
Fast Searching: m&i.
x i. y usually starts by creating a hash table of x and y and then looks for matches in the hash. If you repeatedly use the same x, in other words if you are doing many lookups in the same table, the has of x is recomputed at each invocation of i. . You can have the hash computed once by defining a search verb for the table with
search =: x&i.
The hash is computed when the verb is defined, and subsequent lookup via search y will be faster.
CRC Calculation
x 128!:3 y computes the CRC of the string y . x is the CRC polynomial, a Boolean list. Normally the initial CRC is _1 but you can specify a different initial value by making x a 2-element boxed list of polynomial;initial_value .
If you define a CRC verb as crc =: x&(128!:3)
then the interpreter will precompile the CRC polynomial for x, making subsequent CRC calculations faster.
Unicode Characters: u:
2-byte unicode characters can be represented by variables that have the unicode atomic data type. Such variables are created by the verb u: . Its use is described in the Dictionary.
Window Driver And Form Editor
Designing user interfaces is quick and painless with J's Form Editor. The Lab named Form Editor will show you how.
216