
- •Foreword
- •1. Introduction
- •2. Culture Shock
- •3. Preliminaries
- •Notation Used in This Book
- •Terminology
- •Sentences (statements)
- •Word Formation (tokenizing rules)
- •Numbers
- •Characters
- •Valence of Verbs (Binary and Unary Operators)
- •How Names (Identifiers) Get Assigned
- •Order of Evaluation
- •How Names Are Substituted
- •What a verb (function) looks like
- •Running a J program
- •The Execution Window; Script Windows
- •Names Defined at Startup
- •Step-By-Step Learning: Labs
- •J Documentation
- •Getting Help
- •4. A First Look At J Programs
- •Average Daily Balance
- •Calculating Chebyshev Coefficients
- •5. Declarations
- •Arrays
- •Cells
- •Phrases To Memorize
- •Constant Lists
- •Array-creating Verbs
- •6. Loopless Code I—Verbs Have Rank
- •Examples of Implicit Loops
- •The Concept of Verb Rank
- •Verb Execution—How Rank Is Used (Monads)
- •Controlling Verb Execution By Specifying a Rank
- •Examples Of Verb Rank
- •Negative Verb Rank
- •Verb Execution—How Rank Is Used (Dyads)
- •When Dyad Frames Differ: Operand Agreement
- •Order of Execution in Implied Loops
- •A Mistake To Avoid
- •7. Starting To Write In J
- •8. More Verbs
- •Arithmetic Dyads
- •Boolean Dyads
- •Min and Max Dyads
- •Arithmetic Monads
- •Boolean Monad
- •Operations on Arrays
- •9. Loopless Code II—Adverbs / and ~
- •Modifiers
- •The Adverb Monad u/
- •The adverb ~
- •10. Continuing to Write in J
- •11. Boxing (structures)
- •Terminology
- •Boxing As an Equivalent For Structures In C
- •12. Compound Verbs
- •Verb Sequences—u@:v and u@v
- •Making a Monad Into a Dyad: The Verbs [ and ]
- •Making a Dyad Into a Monad: u&n and m&v
- •13. Empty Operands
- •Execution On a Cell Of Fills
- •Empty cells
- •If Fill-Cells Are Not Enough
- •14. Loopless Code III—Adverbs \ and \.
- •15. Verbs for Arithmetic
- •Dyads
- •Monads (all rank 0)
- •16. Loopless Code IV
- •A Few J Tricks
- •Power/If/DoWhile Conjunction u^:n and u^:v
- •Tie and Agenda (switch)
- •17. More Verbs For Boxes
- •Dyad ; (Link) And Monad ; (Raze)
- •Dyad { Revisited: the Full Story
- •Split String Into J Words: Monad ;:
- •Fetch From Structure: Dyad {::
- •Report Boxing Level: Monad L.
- •18. Verb-Definition Revisited
- •What really happens during m :n and verb define
- •Compound Verbs Can Be Assigned
- •Dual-Valence verbs: u :v
- •The Suicide Verb [:
- •Multi-Line Comments Using 0 :0
- •Final Reminder
- •The Obverse u^:_1
- •Apply Under Transformation: u&.v and u&.:v
- •Defined obverses: u :.v
- •An observation about dyadic verbs
- •20. Performance: Measurement & Tips
- •Timing Individual Sentences
- •Compounds Recognized by the Interpreter
- •Use Large Verb-Ranks! and Integrated Rank Support
- •Shining a Light: The J Performance Monitor
- •21. Input And Output
- •Foreigns
- •File Operations 1!:n; Error Handling
- •Treating a File as a Noun: Mapped Files
- •Format Data For Printing: Monad And Dyad ":
- •Format an Array: 8!:n
- •Format binary data: 3!:n
- •printf, sprintf, and qprintf
- •Convert Character To Numeric: Dyad ".
- •22. Calling a DLL Under Windows
- •Memory Management
- •Aliasing of Variables
- •23. Socket Programming
- •Asynchronous Sockets and socket_handler
- •Names and IP Addresses
- •Connecting
- •Listening
- •Other Socket Verbs
- •24. Loopless Code V—Partitions
- •Find Unique Items: Monad ~. and Monad ~:
- •Apply On Subsets: Dyad u/.
- •Apply On Partitions: Monad u;.1 and u;.2
- •Apply On Specified Partitions: Dyad u;.1 and u;.2
- •Apply On Subarray: Dyad u;.0
- •Apply On All Subarrays: Dyad u;.3 and u;._3
- •Extracting Variable-Length Fields Using ^: and ;.1
- •Example: Combining Adjacent Boxes
- •25. When Programs Are Data
- •Calling a Published Name
- •Using the Argument To a Modifier
- •Invoking a Gerund: m`:6
- •Passing the Definition Of a Verb: 128!:2 (Apply)
- •Passing an Executable Sentence: Monad ". and 5!:5
- •26. Loopless Code VI
- •28. Modifying an array: m}
- •Monad I.—Indexes of the 1s in a Boolean Vector
- •29. Control Structures
- •while./do./end. and whilst./do./end.
- •if./do./else./end., if./do./elseif./do./end.
- •try./catch./catcht./end. and throw.
- •return.
- •assert.
- •30. Modular Code
- •Locales And Locatives
- •Assignment
- •Name Lookup
- •Changing The Current Locale
- •The Shared Locale 'z'
- •Using Locales
- •31. Writing Your Own Modifiers
- •Modifiers That Do Not Refer To x. Or y.
- •Modifiers That Refer To x. Or y.
- •32. Applied Mathematics in J
- •Complex Numbers
- •Matrix Operations
- •Calculus: d., D., D:, and p..
- •Taylor Series: t., t:, and T.
- •Hypergeometric Function with H.
- •Sparse Arrays: Monad and Dyad $.
- •Random Numbers: ?
- •Computational Addons
- •Useful Scripts Supplied With J
- •33. Elementary Mathematics in J
- •Verbs for Mathematics
- •Extended Integers, Rational Numbers, and x:
- •Factors and Primes: Monad p:, Monad and Dyad q:
- •Permutations: A. and C.
- •34. Graphics
- •Plot Package
- •2D Graphics: the gl2 Library
- •Displaying Tabular Data: the Grid Control
- •3D Graphics: OpenGL
- •35. Odds And Ends
- •Dyad # Revisited
- •Boxed words to string: Monad ;:^:_1
- •Spread: #^:_1
- •Choose From Lists Item-By-Item: monad m}
- •Recursion: $:
- •Make a Table: Adverb dyad u/
- •Cartesian Product: Monad {
- •Boolean Functions: Dyad m b.
- •Operations Inside Boxes: u L: n, u S: n
- •Comparison Tolerance !.f
- •Right Shift: Monad |.!.f
- •Generalized Transpose: Dyad |:
- •Monad i: and Dyad i:
- •Fast String Searching: s: (Symbols)
- •Fast Searching: m&i.
- •CRC Calculation
- •Unicode Characters: u:
- •Window Driver And Form Editor
- •Tacit Programming
- •36. Tacit Programs
- •37. First Look At Forks
- •38. Parsing and Execution I
- •39. Parsing and Execution II
- •The Parsing Table
- •Examples Of Parsing And Execution
- •Undefined Words
- •40. Forks, Hooks, and Compound Adverbs
- •Tacit and Compound Adverbs
- •Referring To a Noun In a Tacit Verb
- •41. Readable Tacit Definitions
- •Flatten a Verb: Adverb f.
- •Special Verb-Forms Used in Tacit Definitions
- •43. Common Mistakes
- •Mechanics
- •Programming Errors
- •44. Valedictory
- •45. Glossary
- •46. Error Messages
- •47. Index
The conjunction H. is used in the form m H. n where m is the numerator list and n is the denominator list. The resulting verb m H. n has rank 0. The monad m H. n y takes the limit of the sum of the generalized hypergeometric series; the dyad
x m H. n y takes the sum of the first x terms. Formally, the generalized hypergeometric function is
∞ |
(m 0 )k (m1 )k K(m <:#m )k |
|
y |
k |
|
∑ |
|
|
where (a)k =a(a +1)K(a + k −1) |
||
(n0 )k (n1 )k K(n<:#n )k |
|
k ! |
|||
k =0 |
|
|
If m contains 2 items and n contains 1 item, m H. n defines a hypergeometric function.
Generalized hypergeometric functions can be used to calculate a great many functions of interest: Legendre polynomials, Laguerre polynomials, Chebyshev polynomials, and Bessel functions of the first kind are all special cases of hypergeometric functions. Ewart Shaw, in http://www.ewartshaw.co.uk/data/jhyper.doc, gives a number of examples of uses of H. . For example, the error function and the cumulative distribution function are given by
erf =: 3 : '(((2p_0.5)*y.) % (^*:y.)) * 1 H. 1.5 *: y.' n01cdf =: 3 : '-: >: erf y. % %:2' NB. CDF of N(0,1)
where I have rewritten Shaw's formulas to use elementary J. 2p_0.5 is 2/sqrt(π).
Sparse Arrays: Monad and Dyad $.
$. y converts the array y into a sparse-matrix representation which can save a lot of space and time if most of the atoms of y have the same value. $.^:_1 y converts sparse y back to normal (dense) form. A large but incomplete subset of operations is supported on sparse arrays; look at the description of $. if you think you'd like to use them.
Random Numbers: ?
Monad ? has rank 0. If y is 0, ? y is a random floating-point number uniformly distributed in the interval 0 <= ? y < 1. If y is positive, ? y is a random element of
i.y . An example use is
?3 3 $ 1000
755 458 532
218 47 678
679 934 383
Dyad ? has rank 0. x ? y is a list of x items selected without repetition from
i.y, as if the list i. y were shuffled and the first x elements were taken:
5 ? 52
24 8 48 46 22
The ? verbs use the Mersenne Twister generator by default. Foreigns, described.in the Dictionary page for ?, allow selection of other generators.
188
Computational Addons
The web site at www.jsoftware.com has several addons that you can download. These are executable libraries, along with J scripts to call functions in them, that offer efficient implementations of often-used functions. Two of interest in applied mathematics are the LAPACK addon and the FFT addon. If you want a fast implementation of the singular value decomposition referred to earlier, install the LAPACK addon; then you can use
require 'addons\lapack\lapack' require 'addons\lapack\dgesvd' dgesvd_jlapack_ yourmatrix
which will quickly return the desired singular values and singular vectors.
Useful Scripts Supplied With J
The directory yourJdirectory/system/packages contains a number of subdirectories full of useful scripts. The /math and /stats subdirectories have scripts for mathematics and statistics; other subdirectories cover topics such as finance, printing, graphics, and interfacing to Windows.
189