
- •Основные вопросы учебной программы по физике (1 семестр)
- •5. Центр масс механической системы и закон его движения.
- •11. Удар абсолютно упругих и неупругих тел. Превращения энергии и законы сохранения.
- •12. Момент импульса и момент силы относительно неподвижной точки. Момент импульса и момент силы относительно неподвижной оси.
- •13. Закон сохранения момента импульса материальной точки и системы материальных точек.
- •14. Момент инерции относительно неподвижной оси вращения. Теорема Штейнера. Кинетическая энергия вращающегося тела. Момент инерции тонкого стержня. Работа и мощность при вращении твердого тела.
- •15. Преобразования Галилея. Механический принцип относительности. Специальная и общая теория относительности. Принцип эквивалентности.
- •16. Постулаты специальной теории относительности. Преобразования Лоренца.
- •28. Волновая поверхность. Фронт волны. Сферическая волна. Затухающие волны. Плоская волна. Фазовая скорость и дисперсия волн.
- •29. Энергия волны. Плотность энергии. Средний поток. Плотность потока. Вектор Умова.
- •30. Принцип суперпозиции волн. Интерференция волн. Когерентность. Уравнение стоячей волны и его анализ.
- •32. Опытное обоснование корпускулярно-волнового дуализма вещества. Формула де Бройля. Экспериментальное подтверждение гипотезы де Бройля.
- •33. Волновая функция и ее физический смысл. Временное и стационарное уравнения Шредингера. Стационарные состояния. Собственные функции и собственные значения.
- •34. Соотношение неопределенностей. Ограниченность механического детерминизма.
- •35. Свободная частица. Частица в одномерной потенциальной яме. Квантование энергии и импульса частицы. Принцип соответствия Бора.
- •36. Квантовый гармонический осциллятор. Влияние параметров потенциальной ямы на квантование энергии. Туннельный эффект.
- •37. Статистический метод исследования. Вывод уравнения молекулярно-кинетической теории газов для давления. Средняя кинетическая энергия молекул.
- •39. Закон Максвелла для распределения частиц идеального газа по скоростям и энергии теплового движения. Физический смысл функции распределения. Характеристические скорости.
- •46. Применение первого начала термодинамики к изопроцессам и адиабатическому процессу в идеальном газе. Зависимость теплоемкости идеального газа от вида процесса.
- •47. Обратимые и необратимые процессы. Круговой процесс. Цикл Карно и его к.П.Д. Для идеального газа. Тепловые машины.
- •48. Второе начало термодинамики. Энтропия. Энтропия идеального газа.
- •49. Статистическое толкование второго начала термодинамики.
- •50. Реальные газы. Отступления законов реальных газов от законов для идеальных газов. Силы и потенциальная энергия межмолекулярного взаимодействия. Уравнение Ван-дер-Ваальса.
- •51. Изотермы реального газа. Опыт Эндрюса. Критические параметры.
- •52. Внутренняя энергия реального газа. Эффект Джоуля-Томсона.
- •53. Фазовые переходы первого и второго рода.
- •54. Классические представления о теплоемкости твердых тел. Теория Эйнштейна. Теория Дебая.
- •55. Понятие о фононах. Статистика фононного газа. Плотность состояний.
- •57. Статистика Ферми-Дирака и Бозе-Эйнштейна. Фермионы и бозоны. Квантовые числа. Спин электрона. Принцип неразличимости тождественных частиц. Принцип Паули.
Основные вопросы учебной программы по физике (1 семестр)
1. Моделирование в физике и технике. Физическая и математическая модели. Проблема точности в моделировании.
Для описания движения тел в зависимости от условий конкретных задач используются разные физические модели. Ни одна физическая задача не может быть решена абсолютно точно. Всегда получают приближенное значение.
2. Механическое движение. Виды механического движения. Материальная точка. Система отсчета. Средняя скорость. Мгновенная скорость. Среднее ускорение. Мгновенное ускорение. Скорость и ускорение материальной точки как производные радиус вектора по времени.
Механическое движение – изменение положения тел (или частей тела) друг относительно друга в пространстве с течением времени.
Виды механического движения: поступательное и вращательное.
Материальная точка – тело, размерами которого можно пренебречь в данных условиях.
Система отсчета - совокупность системы координат и часов.
Средняя
скорость -
Мгновенная
скорость -
Среднее
и мгновенное ускорения -
3. Кривизна и радиус кривизны траектории. Нормальное и тангенциальное ускорения. Угловая скорость и угловое ускорение как вектор. Связь угловой скорости и углового ускорения с линейными скоростями и ускорениями точек вращающегося тела.
Кривизна – степень искривленности плоской кривой. Величина, обратная кривизне – радиус кривизны.
Нормальное
ускорение:
Тангенциальное
ускорение:
Угловая
скорость:
Угловое
ускорение:
Связь:
4. Понятие массы и силы. Законы Ньютона. Инерциальные системы отсчета. Силы при движении материальной точки по криволинейной траектории.
Масса – физическая величина, являющаяся одной из основных характеристик материи, определяющая ее инерционные и гравитационные свойства.
Сила – векторная физическая величина, являющаяся мерой интенсивности воздействия на данное тело других тел, а также полей.
Законы Ньютона:
1. Существуют такие системы отсчета, относительно которых поступательно движущиеся тела сохраняют свою скорость постоянной, если на них не действуют другие тела или действие этих тел скомпенсировано. Такие СО – инерциальные.
2.
Ускорение, которое приобретает тело,
прямо пропорционально равнодействующей
всех сил, действующих на тело, и обратно
пропорционально массе тела:
3.
Силы, с которыми тела действуют друг на
друга, одинаковой природы, равны по
модулю и направлению вдоль одной прямой
в противоположный стороны:
5. Центр масс механической системы и закон его движения.
Центр
масс – воображаемая
точка С, положение которой характеризует
распределение массы этой системы.
6. Импульс. Изолированная система. Внешние и внутренние силы. Закон сохранения импульса и его связь с однородностью пространства.
Импульс
– количество
движения, которое равно
Изолированная система - механическая система тел, на которую не действуют внешние силы.
Силы взаимодействия между материальными точками механической системы называются внутренними.
Силы, с которыми на материальны точки системы действуют внешние тела, называются внешними.
Импульс
не изменяется с течением времени:
7. Движение тела с переменной массой. Реактивное движение. Уравнение Мещерского. Уравнение Циолковского.
Движение некоторых тел сопровождается изменением их массы, например масса ракеты уменьшается вследствие истечения газов, образующихся при сгорании топлива.
Реактивная сила – сила, которая возникает в результате действия на данное тело присоединяемой (или отделяемой) массы.
Уравнение
Мещерского:
Уравнение
Циолковского:
,гдеи
— скорость
истечения газов относительно ракеты.
8. Энергия. Виды энергии. Работа силы и ее выражение через криволинейный интеграл. Кинетическая энергия механической системы и ее связь с работой внешних и внутренних сил, приложенных к системе. Мощность. Единицы работы и мощности.
Энергия - универсальная мера различных форм движения и взаимодействия. С различными формами движения материи связывают различные формы энергии: механическую, тепловую, электромагнитную, ядерную и др.
Работа
силы:
Мощность:
Единица работы — джоуль (Дж): 1 Дж — работа, совершаемая силой 1 Н на пути 1 м (1 Дж = 1 Н • м).
Единица мощности — ватт (Вт): 1 Вт — мощность, при которой за время 1 с совершается работа 1 Дж (1 Вт = 1 Дж/с).
9. Консервативные и неконсервативные силы. Потенциальная энергия в однородном и центральном гравитационном поле. Потенциальная энергия упругодеформированной пружины.
Консервативные силы – все силы, которые действуют на частицу со стороны центрального поля: упругие, гравитационные и другие. Все силы, не являющиеся консервативными – неконсервативные: силы трения.
10. Закон сохранения энергии и его связь с однородностью времени. Закон сохранения механической энергии. Диссипация энергии. Диссипативные силы.
Закон сохранения механической энергии: в системе тел, между которыми действуют только консервативные силы, полная механическая энергия сохраняется, т. е. не изменяется со временем.
Закон сохранения механической энергии связан с однородностью времени. Однородность времени проявляется в том, что физические законы инвариантны относительно выбора начала отсчета времени.
Диссипация энергии - механическая энергия постепенно уменьшается за счет преобразования в другие (немеханические) формы энергии.
Диссипативные силы - силы, при действии которых на механическую систему её полная механическая энергия убывает.