
- •Foreword
- •Introduction
- •Scope
- •Conformance
- •Normative references
- •Definitions
- •Notational conventions
- •Acronyms and abbreviations
- •General description
- •Language overview
- •Getting started
- •Types
- •Predefined types
- •Conversions
- •Array types
- •Type system unification
- •Variables and parameters
- •Automatic memory management
- •Expressions
- •Statements
- •Classes
- •Constants
- •Fields
- •Methods
- •Properties
- •Events
- •Operators
- •Indexers
- •Instance constructors
- •Destructors
- •Static constructors
- •Inheritance
- •Static classes
- •Partial type declarations
- •Structs
- •Interfaces
- •Delegates
- •Enums
- •Namespaces and assemblies
- •Versioning
- •Extern Aliases
- •Attributes
- •Generics
- •Why generics?
- •Creating and consuming generics
- •Multiple type parameters
- •Constraints
- •Generic methods
- •Anonymous methods
- •Iterators
- •Lexical structure
- •Programs
- •Grammars
- •Lexical grammar
- •Syntactic grammar
- •Grammar ambiguities
- •Lexical analysis
- •Line terminators
- •Comments
- •White space
- •Tokens
- •Unicode escape sequences
- •Identifiers
- •Keywords
- •Literals
- •Boolean literals
- •Integer literals
- •Real literals
- •Character literals
- •String literals
- •The null literal
- •Operators and punctuators
- •Pre-processing directives
- •Conditional compilation symbols
- •Pre-processing expressions
- •Declaration directives
- •Conditional compilation directives
- •Diagnostic directives
- •Region control
- •Line directives
- •Pragma directives
- •Basic concepts
- •Application startup
- •Application termination
- •Declarations
- •Members
- •Namespace members
- •Struct members
- •Enumeration members
- •Class members
- •Interface members
- •Array members
- •Delegate members
- •Member access
- •Declared accessibility
- •Accessibility domains
- •Protected access for instance members
- •Accessibility constraints
- •Signatures and overloading
- •Scopes
- •Name hiding
- •Hiding through nesting
- •Hiding through inheritance
- •Namespace and type names
- •Unqualified name
- •Fully qualified names
- •Automatic memory management
- •Execution order
- •Types
- •Value types
- •The System.ValueType type
- •Default constructors
- •Struct types
- •Simple types
- •Integral types
- •Floating point types
- •The decimal type
- •The bool type
- •Enumeration types
- •Reference types
- •Class types
- •The object type
- •The string type
- •Interface types
- •Array types
- •Delegate types
- •Boxing and unboxing
- •Boxing conversions
- •Unboxing conversions
- •Variables
- •Variable categories
- •Static variables
- •Instance variables
- •Instance variables in classes
- •Instance variables in structs
- •Array elements
- •Value parameters
- •Reference parameters
- •Output parameters
- •Local variables
- •Default values
- •Definite assignment
- •Initially assigned variables
- •Initially unassigned variables
- •Precise rules for determining definite assignment
- •General rules for statements
- •Block statements, checked, and unchecked statements
- •Expression statements
- •Declaration statements
- •If statements
- •Switch statements
- •While statements
- •Do statements
- •For statements
- •Break, continue, and goto statements
- •Throw statements
- •Return statements
- •Try-catch statements
- •Try-finally statements
- •Try-catch-finally statements
- •Foreach statements
- •Using statements
- •Lock statements
- •General rules for simple expressions
- •General rules for expressions with embedded expressions
- •Invocation expressions and object creation expressions
- •Simple assignment expressions
- •&& expressions
- •|| expressions
- •! expressions
- •?: expressions
- •Anonymous method expressions
- •Yield statements
- •Variable references
- •Atomicity of variable references
- •Conversions
- •Implicit conversions
- •Identity conversion
- •Implicit numeric conversions
- •Implicit enumeration conversions
- •Implicit reference conversions
- •Boxing conversions
- •Implicit type parameter conversions
- •Implicit constant expression conversions
- •User-defined implicit conversions
- •Explicit conversions
- •Explicit numeric conversions
- •Explicit enumeration conversions
- •Explicit reference conversions
- •Unboxing conversions
- •User-defined explicit conversions
- •Standard conversions
- •Standard implicit conversions
- •Standard explicit conversions
- •User-defined conversions
- •Permitted user-defined conversions
- •Evaluation of user-defined conversions
- •User-defined implicit conversions
- •User-defined explicit conversions
- •Anonymous method conversions
- •Method group conversions
- •Expressions
- •Expression classifications
- •Values of expressions
- •Operators
- •Operator precedence and associativity
- •Operator overloading
- •Unary operator overload resolution
- •Binary operator overload resolution
- •Candidate user-defined operators
- •Numeric promotions
- •Unary numeric promotions
- •Binary numeric promotions
- •Member lookup
- •Base types
- •Function members
- •Argument lists
- •Overload resolution
- •Applicable function member
- •Better function member
- •Better conversion
- •Function member invocation
- •Invocations on boxed instances
- •Primary expressions
- •Literals
- •Simple names
- •Invariant meaning in blocks
- •Parenthesized expressions
- •Member access
- •Identical simple names and type names
- •Invocation expressions
- •Method invocations
- •Delegate invocations
- •Element access
- •Array access
- •Indexer access
- •This access
- •Base access
- •Postfix increment and decrement operators
- •The new operator
- •Object creation expressions
- •Array creation expressions
- •Delegate creation expressions
- •The typeof operator
- •The checked and unchecked operators
- •Default value expression
- •Anonymous methods
- •Anonymous method signatures
- •Anonymous method blocks
- •Outer variables
- •Captured outer variables
- •Instantiation of local variables
- •Anonymous method evaluation
- •Implementation example
- •Unary expressions
- •Unary plus operator
- •Unary minus operator
- •Logical negation operator
- •Bitwise complement operator
- •Prefix increment and decrement operators
- •Cast expressions
- •Arithmetic operators
- •Multiplication operator
- •Division operator
- •Remainder operator
- •Addition operator
- •Subtraction operator
- •Shift operators
- •Relational and type-testing operators
- •Integer comparison operators
- •Floating-point comparison operators
- •Decimal comparison operators
- •Boolean equality operators
- •Enumeration comparison operators
- •Reference type equality operators
- •String equality operators
- •Delegate equality operators
- •The is operator
- •The as operator
- •Logical operators
- •Integer logical operators
- •Enumeration logical operators
- •Boolean logical operators
- •Conditional logical operators
- •Boolean conditional logical operators
- •User-defined conditional logical operators
- •Conditional operator
- •Assignment operators
- •Simple assignment
- •Compound assignment
- •Event assignment
- •Expression
- •Constant expressions
- •Boolean expressions
- •Statements
- •End points and reachability
- •Blocks
- •Statement lists
- •The empty statement
- •Labeled statements
- •Declaration statements
- •Local variable declarations
- •Local constant declarations
- •Expression statements
- •Selection statements
- •The if statement
- •The switch statement
- •Iteration statements
- •The while statement
- •The do statement
- •The for statement
- •The foreach statement
- •Jump statements
- •The break statement
- •The continue statement
- •The goto statement
- •The return statement
- •The throw statement
- •The try statement
- •The checked and unchecked statements
- •The lock statement
- •The using statement
- •The yield statement
- •Namespaces
- •Compilation units
- •Namespace declarations
- •Extern alias directives
- •Using directives
- •Using alias directives
- •Using namespace directives
- •Namespace members
- •Type declarations
- •Qualified alias member
- •Classes
- •Class declarations
- •Class modifiers
- •Abstract classes
- •Sealed classes
- •Static classes
- •Class base specification
- •Base classes
- •Interface implementations
- •Class body
- •Partial declarations
- •Class members
- •Inheritance
- •The new modifier
- •Access modifiers
- •Constituent types
- •Static and instance members
- •Nested types
- •Fully qualified name
- •Declared accessibility
- •Hiding
- •this access
- •Reserved member names
- •Member names reserved for properties
- •Member names reserved for events
- •Member names reserved for indexers
- •Member names reserved for destructors
- •Constants
- •Fields
- •Static and instance fields
- •Readonly fields
- •Using static readonly fields for constants
- •Versioning of constants and static readonly fields
- •Volatile fields
- •Field initialization
- •Variable initializers
- •Static field initialization
- •Instance field initialization
- •Methods
- •Method parameters
- •Value parameters
- •Reference parameters
- •Output parameters
- •Parameter arrays
- •Static and instance methods
- •Virtual methods
- •Override methods
- •Sealed methods
- •Abstract methods
- •External methods
- •Method body
- •Method overloading
- •Properties
- •Static and instance properties
- •Accessors
- •Virtual, sealed, override, and abstract accessors
- •Events
- •Field-like events
- •Event accessors
- •Static and instance events
- •Virtual, sealed, override, and abstract accessors
- •Indexers
- •Indexer overloading
- •Operators
- •Unary operators
- •Binary operators
- •Conversion operators
- •Instance constructors
- •Constructor initializers
- •Instance variable initializers
- •Constructor execution
- •Default constructors
- •Private constructors
- •Optional instance constructor parameters
- •Static constructors
- •Destructors
- •Structs
- •Struct declarations
- •Struct modifiers
- •Struct interfaces
- •Struct body
- •Struct members
- •Class and struct differences
- •Value semantics
- •Inheritance
- •Assignment
- •Default values
- •Boxing and unboxing
- •Meaning of this
- •Field initializers
- •Constructors
- •Destructors
- •Static constructors
- •Struct examples
- •Database integer type
- •Database boolean type
- •Arrays
- •Array types
- •The System.Array type
- •Array creation
- •Array element access
- •Array members
- •Array covariance
- •Arrays and the generic IList interface
- •Array initializers
- •Interfaces
- •Interface declarations
- •Interface modifiers
- •Base interfaces
- •Interface body
- •Interface members
- •Interface methods
- •Interface properties
- •Interface events
- •Interface indexers
- •Interface member access
- •Fully qualified interface member names
- •Interface implementations
- •Explicit interface member implementations
- •Interface mapping
- •Interface implementation inheritance
- •Interface re-implementation
- •Abstract classes and interfaces
- •Enums
- •Enum declarations
- •Enum modifiers
- •Enum members
- •The System.Enum type
- •Enum values and operations
- •Delegates
- •Delegate declarations
- •Delegate instantiation
- •Delegate invocation
- •Exceptions
- •Causes of exceptions
- •The System.Exception class
- •How exceptions are handled
- •Common Exception Classes
- •Attributes
- •Attribute classes
- •Attribute usage
- •Positional and named parameters
- •Attribute parameter types
- •Attribute specification
- •Attribute instances
- •Compilation of an attribute
- •Run-time retrieval of an attribute instance
- •Reserved attributes
- •The AttributeUsage attribute
- •The Conditional attribute
- •Conditional Methods
- •Conditional Attribute Classes
- •The Obsolete attribute
- •Unsafe code
- •Unsafe contexts
- •Pointer types
- •Fixed and moveable variables
- •Pointer conversions
- •Pointers in expressions
- •Pointer indirection
- •Pointer member access
- •Pointer element access
- •The address-of operator
- •Pointer increment and decrement
- •Pointer arithmetic
- •Pointer comparison
- •The sizeof operator
- •The fixed statement
- •Stack allocation
- •Dynamic memory allocation
- •Generics
- •Generic class declarations
- •Type parameters
- •The instance type
- •Members of generic classes
- •Static fields in generic classes
- •Static constructors in generic classes
- •Accessing protected members
- •Overloading in generic classes
- •Parameter array methods and type parameters
- •Overriding and generic classes
- •Operators in generic classes
- •Nested types in generic classes
- •Generic struct declarations
- •Generic interface declarations
- •Uniqueness of implemented interfaces
- •Explicit interface member implementations
- •Generic delegate declarations
- •Constructed types
- •Type arguments
- •Open and closed types
- •Base classes and interfaces of a constructed type
- •Members of a constructed type
- •Accessibility of a constructed type
- •Conversions
- •Using alias directives
- •Generic methods
- •Generic method signatures
- •Virtual generic methods
- •Calling generic methods
- •Inference of type arguments
- •Using a generic method with a delegate
- •Constraints
- •Satisfying constraints
- •Member lookup on type parameters
- •Type parameters and boxing
- •Conversions involving type parameters
- •Iterators
- •Iterator blocks
- •Enumerator interfaces
- •Enumerable interfaces
- •Yield type
- •This access
- •Enumerator objects
- •The MoveNext method
- •The Current property
- •The Dispose method
- •Enumerable objects
- •The GetEnumerator method
- •Implementation example
- •Lexical grammar
- •Line terminators
- •White space
- •Comments
- •Unicode character escape sequences
- •Identifiers
- •Keywords
- •Literals
- •Operators and punctuators
- •Pre-processing directives
- •Syntactic grammar
- •Basic concepts
- •Types
- •Expressions
- •Statements
- •Classes
- •Structs
- •Arrays
- •Interfaces
- •Enums
- •Delegates
- •Attributes
- •Generics
- •Grammar extensions for unsafe code
- •Undefined behavior
- •Implementation-defined behavior
- •Unspecified behavior
- •Other Issues
- •Capitalization styles
- •Pascal casing
- •Camel casing
- •All uppercase
- •Capitalization summary
- •Word choice
- •Namespaces
- •Classes
- •Interfaces
- •Enums
- •Static fields
- •Parameters
- •Methods
- •Properties
- •Events
- •Case sensitivity
- •Avoiding type name confusion
- •Documentation Comments
- •Introduction
- •Recommended tags
- •<code>
- •<example>
- •<exception>
- •<list>
- •<para>
- •<param>
- •<paramref>
- •<permission>
- •<remarks>
- •<returns>
- •<seealso>
- •<summary>
- •<value>
- •Processing the documentation file
- •ID string format
- •ID string examples
- •An example
- •C# source code
- •Resulting XML
Chapter 14 Expressions
114.4.2 Overload resolution
2Overload resolution is a compile-time mechanism for selecting the best function member to invoke given an
3argument list and a set of candidate function members. Overload resolution selects the function member to
4invoke in the following distinct contexts within C#:
5• Invocation of a method named in an invocation-expression (§14.5.5).
6• Invocation of an instance constructor named in an object-creation-expression (§14.5.10.1).
7• Invocation of an indexer accessor through an element-access (§14.5.6).
8• Invocation of a predefined or user-defined operator referenced in an expression (§14.2.3 and §14.2.4).
9Each of these contexts defines the set of candidate function members and the list of arguments in its own
10unique way. However, once the candidate function members and the argument list have been identified, the
11selection of the best function member is the same in all cases:
12• First, the set of candidate function members is reduced to those function members that are applicable
13with respect to the given argument list (§14.4.2.1). If this reduced set is empty, a compile-time error
14occurs.
15• Then, given the set of applicable candidate function members, the best function member in that set is
16located. If the set contains only one function member, then that function member is the best function
17member. Otherwise, the best function member is the one function member that is better than all other
18function members with respect to the given argument list, provided that each function member is
19compared to all other function members using the rules in §14.4.2.2. If there is not exactly one function
20member that is better than all other function members, then the function member invocation is
21ambiguous and a compile-time error occurs.
22The following subclauses define the exact meanings of the terms applicable function member and better
23function member.
2414.4.2.1 Applicable function member
25A function member is said to be an applicable function member with respect to an argument list A when all
26of the following are true:
27• The number of arguments in A is identical to the number of parameters in the function member
28declaration.
29• For each argument in A, the parameter passing mode of the argument (i.e., value, ref, or out) is
30identical to the parameter passing mode of the corresponding parameter, and
31o for a value parameter or a parameter array, an implicit conversion (§13.1) exists from the type of the
32argument to the type of the corresponding parameter, or
33o for a ref or out parameter, the type of the argument is identical to the type of the corresponding
34parameter. [Note: After all, a ref or out parameter is an alias for the argument passed. end note]
35For a function member that includes a parameter array, if the function member is applicable by the above
36rules, it is said to be applicable in its normal form. If a function member that includes a parameter array is
37not applicable in its normal form, the function member might instead be applicable in its expanded form:
38• The expanded form is constructed by replacing the parameter array in the function member declaration
39with zero or more value parameters of the element type of the parameter array such that the number of
40arguments in the argument list A matches the total number of parameters. If A has fewer arguments than
41the number of fixed parameters in the function member declaration, the expanded form of the function
42member cannot be constructed and is thus not applicable.
43• If the class, struct, or interface in which the function member is declared already contains another
44applicable function member with the same signature as the expanded form, the expanded form is not
45applicable.
157