
- •Перечень тем практических занятий в группах с педагогической нагрузкой 36 часов
- •Занятие 1,.2. Оценка радиационной обстановки при радиоактивном загрязнении местности (4 часа)
- •2. Порядок выполнения работы
- •1. Общие положения
- •2. Методика решения задач
- •Методика решения задачи 5
- •Определение времени, прошедшего с момента взрыва
- •Коэффициент пересчета к мощности экспозиционной дозы на один час после взрыва
- •Исходные данные для решения задач 3,4 и 5
- •Значение остаточных эквивалентных доз облучения в зависимости от времени
- •Возможные радиационные потери при однократном (до 4-х суток) облучении
- •2. Порядок выполнения работы
- •Внешнее облучение
- •Внутреннее облучение
- •Учебно-методические материалы
- •Литература
- •1.Приложения
- •2. Порядок выполнения работы
- •3. Методика выполнения работы
- •Литература
- •4. Приложения
- •Занятие 5. Прогнозирование и оценка химической обстановки в техногенных чрезвычайных ситуациях
- •2. Порядок выполнения работы
- •1. Общие положения
- •Типовые зоны химического заражения
- •Факторы, влияющие на глубину распространения и продолжительность действия зараженного воздуха
- •Основные способы защиты населения в условиях заражения воздуха хов
- •2. Методика решения задач Задача 1. Определение продолжительности поражающего действия хов
- •2.2. Определение эквивалентного количества вещества в первичном облаке
- •2.3. Определение эквивалентного количества вещества во вторичном облаке
- •Литература:
- •3. Приложения
- •Основные характеристики хов
- •Вариант № ____ Учебная группа___________
- •2. Порядок выполнения работы
- •Раздел 1. Общие положения
- •Раздел 2. Методика оценки экономического, социального и экологического ущербов Задача 1. Укрупненная оценка экономического ущерба от загрязнения атмосферы
- •Санаторий
- •Зона отдыха
- •Литература:
- •Занятие 7, 8. Ликвидация чрезвычайной ситуации, вызванной аварией на нефтепроводе, и оценка ее последствий
- •Введение
- •Теоретическая часть
- •1.2. Особенности проведения спасательных и других неотложных работ
- •Особенности проведения мониторинга окружающей среды
- •Приложения
- •Приложение 3
- •Приложение 4
- •Приложение 6
- •Вопросы к зачету
- •Занятие 9. Оценка и предупреждение чрезвычайной ситуации, вызванной загрязнением почвы тяжелыми металлами
- •3. Материально-техническое обеспечение:
- •1. Теоретическая часть Сущность метода атомно-абсорбционной спектрометрии
- •Задание для выполнения практической работы:
- •Оформление работы
- •Порядок выполнения работы
- •Меры защиты почв от загрязнения свинцом
- •Исходные данные для выполнения практической работы
- •Вопросы к зачету
- •Литература
- •2. Общий порядок выполнения работы
- •Введение
- •1. Теоретическая часть
- •Основные характеристики состава нефти
- •1.3. Порядок определения концентрации нефтепродуктов в пробе грунтовой воды методом хромато-масс-спектрометрии
- •1.4. Сущность основных современных технологий для очистки (рекультивации) грунтовых вод от нефти
- •Практическая часть Порядок выполнения работы
- •2. Дать экологическую оценку состояния грунтовой воды и выбрать оптимальную технологию очистки загрязненных нефтью грунтовых вод
- •Результаты расчетов площади пика ароматического углеводорода
- •Вопросы к зачету
- •Занятие 11, 12. Оценка устойчивости потенциально-опасного объекта к воздействию воздушной ударной волны. (4 часа).
- •2. Общий порядок выполнения работы
- •Введение
- •1. Теоретическая часть
- •2. Практическая часть Порядок выполнения работы
- •Приложения
- •1. Повышение устойчивости зданий и сооружений
- •2. Повышение устойчивости технологического оборудования-
- •3. Дополнительно проводятся следующие мероприятия:
- •Вопросы к зачету
- •3. Учебно-методические материалы
- •Задачи при оказании первой помощи:
- •Признаками жизни являются:
- •3.2. Средства у спасателя для оказания первой медицинской помощи
- •3.3. Первая медицинская помощь при автородожных происшествиях
- •3.4. Первая медицинская помощь при травматическом и аллергическом шоке
- •3.5. Первая медицинская помощь при сдавливаниях и ушибах
- •Первая медицинская помощь при поражении опасными химическими веществами
- •3.7.1.Общие мероприятия, которые необходимо проводить в очаге химического поражения
- •3.8. Первая медицинская помощь при несчастных случаях
- •3.8.2. Оказание первой медицинской помощи при поражениях электрическим током
- •3.8. Первая медицинская помощь при сердечно-сосудистых нарушениях
- •3. 10. Первая медицинская помощь в очаге радиационной аварии
- •Контрольные вопросы
- •Литература
- •Занятие.15 действия населения в биолого-социальных чрезвычайных ситуациях
- •3. Учебно-методические материалы
- •Мероприятия по профилактике инфекционных заболеваний
- •Контрольные вопросы
- •Литература
- •2. Порядок выполнения работы
- •А. Коллективные средства защиты населения
- •1.1. Классификация убежищ
- •1.2. Основные требования к убежищам:
- •1.3. Устройство убежища
- •Помещение для укрываемых
- •1.4. Система жизнеобеспечения убежища
- •1.5. Порядок использования убежища
- •2. Противорадиационные укрытия
- •3. Простейшие укрытия
- •Б. Средства индивидуальной защиты (сиз) Классификация средств индивидуальной защиты
- •1. Гражданские противогазы
- •2. Промышленные противогазы
- •3. Медицинские средства индивидуальной защиты
- •Аптечка индивидуальная аи-2
- •Литература
- •Выписка из решения начальника гражданской обороны объекта о защите рабочих, служащих и населения при химическом заражении
- •2. Быть в готовности:
- •О выполнении расчетной работы по теме
- •"Управление в чрезвычайных ситуациях. Выработка и принятие решения на эвакуацию"
- •Студента ____________________ ___________ учебной группы. Вариант n___
- •Лабораторное занятие оценка чрезвычайной ситуации, вызванной загрязнением гидросферы нитратами
- •1. Цель работы:
- •1.1. Количественное определение содержания нитратов в почве, загрязненной азотными удобрениями.
- •3. Материально-техническое обеспечение:
- •1. Теоретическая часть
- •Составные части фотометров.
- •Особенности фотометра sq-300
- •Оформление работы
- •Порядок выполнения работы
- •Результаты определения концентрации нитратов
- •Вопросы к зачету
1. Теоретическая часть Сущность метода атомно-абсорбционной спектрометрии
Метод атомно-абсорбционной спектрометрии (ААС) основан на резонансном поглощении (абсорбции) света свободными атомами элемента, возникающем при пропускании пучка света через слой атомного пара. Селективно поглощая свет на частоте резонансного перехода, атомы переходят из основного в возбужденное состояние, а интенсивность проходящего пучка света на этой частоте экспоненциально убывает по закону Бугера-Ламберта-Бера:
I = I010–kсl , (1)
где : k – коэффициент поглощения света, зависящий от природы элемента;
с – концентрация элемента;
l – толщина поглощающего слоя, см.
При практических измерениях обычно пользуются значением оптической плотности, или абсорбции (А):
A = lg(I0/I) = kсl. (2)
Измерение оптической плотности производят с помощью спектрофотометрических приборов.
Принципиальная схема атомно-абсорбционного спектрофотометра представлена на рис.1.
Рис.1. Схема атомно-абсорбционного спектрометра:
– источник излучения; 2 – модулятор; 3 – горелка; 4 – монохроматор; 5 – фотодетектор; 6 – регистрирующее устройство
Свет от источника резонансного излучения проходит через модулятор, пламя с атомизированной пробой, в которой частично поглощается, затем проходит через монохроматор, попадает на фотодетектор, затем на регистрирующее устройство.
Для успешного определения концентрации элемента в анализируемой пробе необходимо создать оптимальные условия для разделения молекул на атомы, выделения их в газовую фазу, наблюдения и регистрации в определенных условиях характеристических спектров поглощения.
Исходя из этих требований, строится вся аппаратура для атомно-абсорбционной спектрометрии.
Источники излучения. Теоретически в качестве источника излучения может служить любой источник (даже обычная лампочка накаливания), поскольку атомы определяемого элемента "выберут" из потока фотонов лишь те, которые соответствуют их энергетическим переходам (резонансное излучение). Однако на практике источники непрерывного излучения мало пригодны. Если использовать непрерывный источник излучения, то атомы вещества поглотят лишь очень небольшую часть падающего на них излучения и детектор не уловит разницу между излучением источника и излучением, прошедшим через пробу. Следовательно, чтобы поглощение атомами было заметно, нужно направлять на пробу излучение с очень узким интервалом длин волн. В идеале необходимо излучение с длиной волны, соответствующей одному энергетическому переходу в атоме исследуемого вещества.
К таким идеальным источникам приближаются лампы с полым катодом, представляющие собой стеклянный баллон с кварцевым окном (рис.2), заполненный инертным газом.
Рис.2. Лампа с полым катодом
Цилиндр катода изготовлен из того металла, который нужно определять (иногда цилиндр покрыт этим металлом). На катод и анод, закрепленные в баллоне, подают высокое напряжение. Под действием высоковольтного разряда атомы инертного газа ионизируются, направляются к катоду и выбивают из него атомы металла, которые возбуждаются и испускают излучение с характерным для него линейчатым спектром. Излучение направляют на пламя (или в графитовую кювету), где находятся атомы определяемого элемента, поглощающие резонансное излучение источника. Таким образом, для определения каждого элемента нужна своя лампа.
Модулятор. Для получения достоверных результатов методом ААС измеряют относительную интенсивность двух потоков излучения. Один из них проходит через атомный пар, другой является потоком сравнения. На эти световые потоки возможно наложение постороннего излучения - флуоресценции атомов исследуемого вещества при возвращении из возбужденного состояния и свечения пламени. Для устранения мешающего влияния этих видов излучения используют модуляцию светового потока. На пути падающего излучения устанавливают модулятор – вращающийся диск с вырезанными сегментами (вращающийся прерыватель) либо вращающийся барабан с отверстиями. При этом, когда прерыватель перекрывает излучение от лампы с полым катодом, на детектор попадает постоянный сигнал от пламени, когда прерыватель открыт, на детектор попадает сигнал от источника, прошедший через пробу, и постоянный сигнал от пламени. Постоянный сигнал отсекают, а переменный усиливают и направляют на регистрирующее устройство.
Образование атомов в пламени. В ААС аналитический сигнал получают от невозбужденных атомов, поэтому одним из важнейших узлов атомно- абсорбционного спектрометра является устройство атомизации. В качестве атомизатора подходят лишь те источники, энергии которых хватает для распада вещества на атомы, но не для возбуждения атомов. Количество возбужденных атомов не должно превышать 0,02–0,1% от их общего числа. Этим требованиям удовлетворяют пламенные и электротермические атомизаторы, в которых используется тепловая энергия. Перед атомизацией анализируемый образец переводят в раствор.
Типичное устройство пламенного атомизатора состоит из распылительной камеры и горелки (рис. 3).
Рис.3. Система распылитель-горелка:
1 – импактор; 2 – распылитель; 3 – раствор пробы; 4 – горелка; 5 – камера распыления
Раствор пробы впрыскивают с помощью распылителя в камеру, при чем скорость впрыскивания раствора регулируют потоком газа-окислителя, например воздуха. Полученное облако капелек в камере распыления сталкивается на своем пути с механическим препятствием, называемым импактором, на котором большие капли осаждаются либо разбиваются об него на более мелкие. Маленькие капельки уносятся потоком газа-окислителя из камеры распыления в горелку, где они вместе с газом-окислителем смешиваются с горючим газом. Капельки со смесью горючего газа и окислителя проходят через узкую щель в торце горелки и при поджигании образуют пламя. Длина щели горелки определяет толщину поглощающего слоя.
В качестве окислителя в горелке используют закись азота, в качестве горючего газа – ацетилен. Температура пламени этой смеси достигает 3000К, пламя имеет превосходные восстановительные характеристики, и так как смесь этих газов горит достаточно медленно, капельки, частицы и свободные атомы пребывают довольно долго в пламени. Часто используют смесь воздуха с ацетиленом. Несмотря на более низкую температуру по сравнению с температурой пламени смеси закись азота – ацетилен, воздушно-ацетиленовое пламя имеет меньшую собственную эмиссию, которая является помехой для сигнала.
При определении следовых количеств элементов, когда требуется очень высокая чувствительность, используется непламенный атомизатор – графитовая кювета (графитовая трубка). Она позволяет исключить или резко уменьшить влияние таких факторов, как побочные реакции и краткое время пребывания частиц в атомарном состоянии (10-3 сек), присущих атомизации пробы в пламени. Графитовая трубка быстро нагревается и проба, которая подается дозатором через отверстие в трубке, мгновенно испаряется, заполняя атомным паром трубку. Графитовая трубка находится в среде инертного газа (аргона), что исключает побочные реакции. Время пребывания атомов в трубке 1–1,5 с.
Монохроматор. Монохроматор служит для выделения узкого участка спектра; его основные детали – щели, линзы, зеркала и диспергирующие элементы (призмы, дифракционные решетки и др.)
Детектор. Детектор преобразует падающую на него световую энергию в электрический сигнал. В атомно-абсорбционном спектрометре для этой цели всегда используют фотоумножители.
2. ПРАКТИЧЕСКАЯ ЧАСТЬ