
- •Введение
- •I. Квантовая природа электромагнитного излучения
- •1. Тепловое излучение
- •1.1. Свойства теплового излучения
- •1.2. Функция Кирхгофа. Абсолютно черное тело
- •1.3. Закон Стефана-Больцмана. Формула Рэлея-Джинса. Закон смещения Вина
- •1.4. Теория Планка
- •2. Квантовые свойства излучения
- •2.1. Фотоэффект
- •Энергия, масса и импульс фотона. Давление света
- •Эффект Комптона
- •II. Основы атомной и молекулярной физики
- •3. Закономерности в атомных спектрах Теория атома Бора
- •4. Элементы квантовой механики
- •4.1. Волновые свойства вещества. Гипотеза де Бройля
- •4.2. Принцип неопределенности Гейзенберга
- •4.3. Волновая функция
- •5. Квантовые уравнения движения
- •5.1. Уравнение Шредингера
- •5.2. Уравнение Шредингера для свободной частицы
- •5.3. Уравнение Шредингера для частицы в силовом поле
- •5.4. Стационарное уравнение Шредингера
- •5.5. Уравнение Шредингера для частицы в потенциальной яме
- •6. Дополнительные приложения квантовой механики
- •6.1. Прохождение частицы через потенциальный барьер. Туннельный эффект
- •6.2. Гармонический осциллятор. Фононы
- •7. Квантово-механическое описание атома водорода
- •7.1. Уравнение Шредингера для атома водорода. Главное квантовое число
- •7.2. Момент импульса атома. Орбитальное и магнитное квантовые числа
- •7.3. Правила отбора. Спектры атомов
- •7.4. Собственный момент электрона
- •8. Физика многоэлектронных систем
- •8.1. Спектры многоэлектронных атомов. Принцип Паули
- •8.2. Эффект Зеемана
- •8.3. Природа химической связи. Виды молекул
- •9. Физические основы лазеров
- •9.1. Спонтанное и вынужденное излучение
- •9.2. Принцип работы и устройство лазеров
- •III. Основы квантовой статистики
- •10. Статистика Бозе-Эйнштейна и Ферми-Дирака
- •IV. Зонная теория твердых тел
- •11. Металлы, полупроводники, диэлектрики Образование энергетических зон
- •12. Собственная и примесная проводимость полупроводников
- •12.1. Собственная проводимость
- •12.2. Примесная проводимость
- •12.3. Квантовая теория проводимости металлов
- •12.4. Сверхпроводимость
- •V. Основы ядерной физики
- •13. Характеристики атомного ядра
- •13.1. Состав и характеристики атомных ядер
- •13.2. Модели ядра: капельная и оболочечная
- •13.3. Зависимость удельной энергии связи атомного ядра от числа нуклонов
- •13.3. Ядерные силы
- •13.4. Образование ядер. Дефект масс
- •14. Радиоактивность и ее виды
- •14.1. Закон радиоактивного превращения
- •14.2. Альфа-распад
- •14.3. Бета-распад
- •14.4. Спонтанное деление тяжелых ядер. Гамма-излучение
- •15. Ядерные реакции
- •15.1. Вынужденные ядерные процессы
- •15.2. Реакция деления ядра
- •15.3. Реакция синтеза атомных ядер
- •Заключение
- •Библиографический список
- •Оглавление
- •394026 Воронеж, Московский просп., 14
4.3. Волновая функция
Итак, микрочастицы не подчиняются законам классической механики, их поведение нельзя описать принятыми в классической физике способами. Этот факт заставил ученых создать новую теорию. Новая механика, названная квантовой, основывалась на идеях Планка, Эйнштейна, Борна и де Бройля. Основоположниками стали австриец Эрвин Шредингер (1887 – 1961), немец Вернер Карл Гейзенберг (1901 – 1976) и англичанин Поль Адриен Морис Дирак (1902 – 1984).
Одной из основных при этом стала задача математического описания поведения микрочастиц, причем такое, чтоб характеризующая их функция отражала одновременно и волновые и корпускулярные свойства.
Рассмотрим картину, образующуюся при дифракции электронов на двухщелях. В каждой точке фотопластинки степень почернения, вызванного ударами дифрагированных электронов, определяется интенсивностью волн де Бройля в направлении данной точки (рис. 4.2). Напомним, что согласно волновой теории света, число фотонов в данной точке дифракционной картины задается квадратом амплитуды световой волны, то есть ее интенсивностью. С другой стороны, число электронов в каждой точке дифракционной картины определяется вероятностью их попадания в данную точку. Чтобы учесть волновые свойства микрочастиц, де Бройль предложил рассматривать некую функциюΨ(x,y,z,t), меняющуюся по волновому закону, т.е. какволну де Бройля(см. выше):
(4.11)
где
– вектор, определяющий положение частицы
в пространстве.Ψ(x,y,z,t)была названаволновой функцией.
Идея использовать функцию вида (4.11) возникла в связи с тем, что поведение свободной микрочастицы имело выраженную аналогию с поведением световой волны, описываемой волновыми уравнения колебаний векторов электрической и магнитной напряженностей:
(4.12)
где для учета корпускулярных свойств
волновые параметры
и
заменены
с учетом формул (4.1, 4.2) энергией и импульсом
рассматриваемой частицы:
(4.13)
Однако, не следует думать, что волновая функция получена простой подстановкой соответствующих параметров в выражения (4.12). Она лишь имеет аналогичную формулировку и отражает корпускулярно-волновые особенности как поведения микрочастиц, так и распространения света.
Правильную интерпретацию волновой функции дал М. Борн в 1926 г. Сама волновая функция имеет комплексное значение и не обладает физическим смыслом – то есть в природе не существует такого параметра, измерение которого дало бы значение, равное волновой функции.
Согласно Борну, физический смысл имеет квадрат модуля волновой функции, который пропорционален вероятности обнаружить частицу в момент времени t в объеме dV (dx, dy, dz) вокруг точки (x, y, z):
(4.14)
(4.15)
где Ψ*– функция, комплексно сопряженная сΨ.
Таким образом, в квантовой механике вводится так называемая волновая функция, которая полностью описывает состояние микрочастицы и при этом отражает как ее корпускулярные, так и волновые свойства.
Вероятность обнаружить частицу в элементе объема dVравна:
(4.16)
Вероятность же нахождения частицы в конечном объеме V, согласно теореме сложения вероятностей, равна:
(4.17)
где интегрирование проводится по координатам x,y,z. Очевидно, что сам факт существования частицы означает, что вероятность найти ее где-либо в бесконечном объеме равна 1:
(4.18)
Выражение (4.18) называется условием нормировкиволновой функции.
Волновая функция Ψ (x,
y, z,
t)является
комплексной, конечной (в противном
случае вероятность обнаружения частицы
может оказаться больше 1), однозначной
и непрерывной. Забегая вперед, уточним,
что непрерывными должны быть и частные
производные,
,
,
.
Кроме того, волновая функция удовлетворяет принципу суперпозиции: если система может находиться в различных состояниях, описываемых волновыми функциямиΨ1,Ψ2, ...,Ψn, ..., то она может находиться в состоянии Ψ, описываемом линейной комбинацией этих функций:
(4.19)
где Cn (n = 1, 2, ...)– произвольные комплексные числа.
С помощью волновой функции можно найти средние значения физических величин, таких как средние скорость, расстояние электрона от ядра и другие. В частности средняя скорость частицы будет равна:
(4.20)