Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

09.Design limitations of feedback control

.pdf
Скачиваний:
21
Добавлен:
23.08.2013
Размер:
488.83 Кб
Скачать

22/10/2004

9.3 The robust performance problem

381

Proof The first inequality follows directly from Corollary 9.17 after adding the simplifying hypotheses. The second inequality follows from straightforward manipulation of the inequality

π−Θpb)

2 Θp(ωb) ≤ Tmax.

The upshot of the corollary is that if one wishes to make the lower bound on the H -form

of TL smaller than 2, then the closed-loop bandwidth will exceed the location of the real, unstable pole p.

Often in applications one wishes to impose the conditions (9.5) and (9.6) together, with

ω2 > ω1, and noting that (9.6) implies that |SL(iω)| < 1 for |ω| > ω2. The picture is

2

shown in Figure 9.6: one wishes to design the sensitivity function so that it remains below

|SL(iω)|

1

 

 

ω

ω1

ω2

Figure 9.6 Combined sensitivity and complementary sensitivity function restrictions

the shaded area. Thus one will want to minimise the sensitivity function over a range of frequencies, as well as attenuate the complementary sensitivity function for high frequencies. Assuming that z C+ is a zero for RL, computations like those used to prove Corollary 9.16 then give

 

 

1

 

Θz(ω1)

 

 

 

 

π−Θz(ω2)

 

 

 

π

 

 

 

 

 

 

 

 

 

kSLk

Θz(ω2)

Θz

 

1 + 2

Θz(ω2)

Θz(ω1)

BSL

 

Θz(ω2)−Θz(ω1)

.

(9.7)

 

 

1

 

 

1)

1

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The implications of this lower bound are examined in a simple case in Exercise E9.4.

9.3 The robust performance problem

So-called “Hdesign” has received increasing attention in the recent control literature. The basic methodology has its basis in the frequency response ideas outlined in Section 8.5.2 and Section 9.2. The idea is that, motivated by Proposition 8.24, one wishes to minimise kSLk. However, as we saw in Section 9.2, this is not an entirely straightforward task. Indeed, certain plant features—unstable poles and/or nonminimum phase zeros—can make this task attain a subtle nature. In this section we look at some ways of getting around these

382

9 Design limitations for feedback control

22/10/2004

di culties to specify realistic performance objectives. The approach makes contact with the topic of robust stability of Section 7.3, and enables us to state a control design problem, the so-called “robust performance problem.” The resulting problem, as we shall see, takes the form of a minimisation problem, and its solution is the subject of Chapter 15.

We shall continue in this section to use the unity gain feedback loop of Figure 6.25 that we reproduce in Figure 9.7.

rˆ(s)

RC (s)

RP (s)

yˆ(s)

 

 

 

Figure 9.7 Unity gain feedback loop for robust performance problem

9.3.1 Performance objectives in terms of sensitivity and transfer functions If you ever thought that it was possible to arbitrarily assign performance specifications to a system, it is hoped that the content of Sections 9.1 and 9.2 have made you think di erently. But perhaps by now one is frightened into thinking that there is simply no way to specify performance objectives that are achievable. This is not true, of course. But what is true is that one needs to be somewhat cagey about how these specifications are stated.

Let us begin by reinforcing our results about the di culty facing us by trying something na¨ıve. According to Proposition 8.24, if we wish to minimise the energy of the error, we should minimise the H-norm of SL. Thus, we could try to specify > 0 and then set out to design a controller with the property that kSLk≤ . This objective may be impossible

for many reasons, and let us list some of these.

 

 

9.19 Reasons why na¨ıve sensitivity minimisation fails

1. If RP is strictly

proper, and we

wish to design a proper controller RC , then the loop gain RL =

RC RP is strictly

proper. Thus TL is also strictly proper. Therefore, limω→∞ |TL(iω)| = 0 from which it

follows (from the fact that SL + TL = 1) that limω→∞ |SL(iω)| = 1.

Thus, in such a

setting, we cannot possibly specify a H-norm bound for SL which is less than 1.

2.Based upon Proposition 8.22 we have two situations that provide limitations on possible sensitivity reduction.

(a)If RP and RC have no poles in C+ and if either have a zero in C+, then RL is analytic in C+ and has a zero z C+. From Proposition 8.22 we have SL(z) = 1. Thus it follows from the Maximum Modulus Principle (Theorem D.9) that |SL(iω)| ≥ 1 for some ω R.

(b)This is much like the previous situation, except we reflect things about the imag-

inary axis. Thus, if RP and RC have no poles in Cand if either have a zero in C, then RL is analytic in Cand has a zero z C. Arguing as above, we see that |SL(iω)| ≥ 1 for some ω R.

3.If the relative degree of RL = RC RP exceeds 1 and if RL is strictly proper, then, from Theorem 9.7 we know that kSLk> 1. Furthermore, this same result tells us that this e ect is exacerbated by RL having unstable poles.

22/10/2004

9.3 The robust performance problem

383

4.If RL is nonminimum phase and if we minimise |SL| over a certain range of frequencies, then the result will be an increase in kSLk.

5.The previous point is reiterated in the various corollaries to the Poisson integral formu-

lae given in Theorem 9.13. Here the location of nonminimum phase zeros is explicitly seen in the estimate for the H-norm for the sensitivity function.

The above, apart from providing a neat summary of some of the material in Section 9.2, indicates that the objective of minimising |SL(iω)| over the entire frequency range is perhaps not a good objective. What’s more, from a practical point of view, it is an excessively stringent condition. Indeed, remember why we want to minimise the sensitivity function: to reduce the L2-norm of the error to a given input signal. However, in a given application, one will often have some knowledge about the nature of the input signals one will have to deal with. This knowledge may come in the form of, or possibly be converted into the form of, frequency response information. Let us give some examples of how such a situation may arise.

9.20 Examples 1. Suppose that we are interested in tracking sinusoids with frequencies in a certain range with minimal error. Thus we take a class of nominal signals to be sinusoids of the form

{r(t) = a sin ωt | 0 ≤ a ≤ 1} .

Now we bias a subset of these inputs as follows:

Lref = {|Wp(iω)a| sin ωt | 0 ≤ a ≤ 1} ,

where Wp R(s) is a function for which the magnitude of restriction to the imaginary axis captures the behaviour we wish be giving more weight to certain frequencies. With this set of inputs, the maximum error is

sup kek= sup |Wp(iω)SL(iω)|

r Lref

ω

 

= kWpSLk.

Note here that the measure of performance we use is the L-norm of the error. In the following two examples, di erent measures will be used.

2.One can also think of specifying the character of reference signals by providing bounds on the H2-norm of the signal. Thus we could think of nominal signals as being those of the form

{rnom : [0, ∞) → R | krˆnomk2 ≤ 1} ,

and these are shaped to a set of possible reference signals

Lref = {r : [0, ∞) → R | rˆ = Wprnom, krˆnomk2 ≤ 1} ,

where Wp is a specified transfer function that shapes the energy spectrum of the signal to a desired shape. Simple manipulation then shows that

Lref =

r : [0, ∞) → R

 

1

rˆ(iω)

 

2

Z−∞

Wp(iω)

 

dω ≤ 1 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

384

9 Design limitations for feedback control

22/10/2004

 

If we wish to minimise the L2-norm of the error, then the maximum error is given by

 

r Lref

k k2

k

p

S

L

r

nomk2

r

nom

 

 

sup

e

= sup

W

 

 

 

1

 

 

 

= kWpSLk,

 

 

 

 

 

where we have used part (i) of Theorem 5.21. Again, we have arrived at a specification of the form of kWpSLk< .

3. The above argument can be carried out for nominal reference signals

{rnom : [0, ∞) → R | pow(ˆrnom) ≤ 1} .

Similar arguments, now asking that the power spectrum of the error be minimised, lead in the same way (using part (ix) of Theorem 5.21) to a condition of the form kWpSLk< .

4.Suppose that one knows from past experience that a controller will perform well if the frequency response of the sensitivity function lies below that of a given transfer function. Thus one would have a specification like

|SL(iω)| ≤ |R(iω)| ,

ω > 0,

(9.8)

where R R(s) comes from somewhere or other.

In this case, if we define Wp(s) =

R(s)−1, this turns (9.8) into a condition of the form kWpTLk< 1.

 

Note that all specifications like kWpSLk< are by simple scaling transfered to a condition of the form kWpSLk< 1. This is the usual form for these conditions to take, in practice.

The above examples present, in sort of general terms, possible natural ways in which one can arrive at performance criterion of the form kWpSLk< 1, for some Wp R(s). In making such specifications, one in only interested in the magnitude of Wp on the imaginary axis. Therefore one may as well suppose that Wp has no poles or zeros in C+.1 In this book, we shall alway deal with specifications that come in the form kWpSLk< 1. Note also that

one might use the other transfer functions

 

 

 

TL =

RC RP

, RC SL =

RC

, RP SL =

RP

 

 

1 + RC RP

 

1 + RC RP

1 + RC RP

for performance specifications in the case when the loop gain RL is the product of RC with RP . There is nothing in principle stopping us from using these other transfer functions; our choice is motivated by a bald-faced demand for simplicity. Below we shall formulate criterion that use our performance conditions of this section, and these results are complicated if one uses the any of the other transfer functions in place of the sensitivity function.

There is a readily made graphical interpretation of the condition kWpSLk< 1, mirroring the pictures in Figures 7.21 and 7.25. To see how this goes, note the following:

kWpSLk< 1

|Wp(iω)SL(iω)| < 1, ω R

 

 

 

Wp(iω)

< 1, ω R

 

1 + RL(iω)

 

 

W

(iω)

<

1 + R

(iω)

, ω

R

|

p

|

 

|

L

|

 

|Wp(iω)| < |−1 − RL(iω)| , ω R.

1If Wp has, say, a zero z C+, then we can write Wp = (s − z)kW (s) where W (z) 6= 0. One can then

˜

k

W (s) has the same magnitude as Wp

on the imaginary

easily verify that the new weight Wp(s) = (s + z)

 

axis. Doing this for all poles and zeros, we see that we can produce a function with no poles or zeros in C+ that has the same magnitude on iR.

22/10/2004

9.3 The robust performance problem

385

Now note that |−1 − RL(iω)| is the distance away from the point −1+i0 of the point RL(iω) on the Nyquist contour for RL. Thus the interpretation we make is that the Nyquist contour at frequency ω remain outside the closed disk centred at −1 + i0 of radius |Wp(iω)|. This is depicted in Figure 9.8. Note that we could just as well have described the con-

|Wp(iω)|

−1 + i0

RL(iω)

Figure 9.8 Interpretation of weighted performance condition

dition kWpSLk< 1 just as we did in Figures 7.21 and 7.25 by saying that the circle of radius |Wp(iω)| and centre RL(iω) does not contain the point −1 + i0. However, the interpretation we have given has greater utility, at least as we shall use it. Also, note that one can make similar interpretations using any of the other performance conditions

|WpTL|, |WpRC SL|, |WpRP SL|< 1.

9.3.2 Nominal and robust performance Now that we have a method for producing frequency domain performance specifications that we can hope are manageable, let us formulate some problems based upon combining this strategy with the uncertainty models of Section 4.5 and the notions of robust stability of Section 7.3. The situation is roughly this: we have a set of plants P and a performance weighting function Wp that gives a performance specification kWpSLk< 1. We wish to examine questions dealing with stabilising all plants in P while also meeting the performance criterion.

The following definition makes precise the forms of stability possible in the framework just described.

¯

 

 

 

9.21 Definition Let RP R(s) be proper and suppose that RC R(s) renders IBIBO stable

 

¯

¯

 

the interconnection of Figure 9.7. Let SL

and TL denote the corresponding sensitivity and

closed-loop transfer functions.

Let Wu

+

¯

RHand recall the definitions of

P×(RP , Wu)

¯

¯

¯

 

and P+(RP , Wu) and for RP P×(RP , Wu) or RP P+(RP , Wu) denote by SL(RP ) and

TL(RP ) the corresponding sensitivity and closed-loop transfer functions, respectively. Let Wp R(s) have no poles or zeros in C+.

¯ ¯

(i) RC provides nominal performance for P×(RP , Wu) (resp. P+(RP , Wu)) relative to Wp if

386

9 Design limitations for feedback control

22/10/2004

¯¯

(a)RC provides robust stability for P×(RP , Wu) (resp. P+(RP , Wu)) and

¯

(b)WpSL ∞ < 1.

¯

¯

(ii) RC provides robust performance for P×(RP , Wu) (resp. P+(RP , Wu)) relative to

Wp if

 

¯

¯

(a) RC provides robust stability for P×(RP , Wu) (resp. P+(RP , Wu)) and

¯

 

(b) kWpSL(RP )k< 1 for every RP P×(RL, Wu).

Thus by nominal performance we mean that the controller provides robust stability, and meets the performance criterion for the nominal plant. However, robust performance requires that we have robust stability and that the performance criterion is met for all plants in the uncertainty set. Thus nominal performance consists of the two conditions

 

 

WuT¯L ∞ < 1,

WpS¯L ∞ < 1

for multiplicative uncertainty, and

 

 

 

 

 

 

 

 

 

 

 

WuRC S¯L ∞ < 1,

 

WpS¯L ∞ < 1

for additive uncertainty.

To interpret robust performance, note that for multiplicative per-

 

 

 

 

 

 

 

 

 

 

 

 

turbations we have

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SL(RP ) =

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 + RC RP

 

 

 

 

 

 

 

 

=

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

 

 

 

 

 

1 + RC (1 + Δ)RP

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

 

 

 

 

 

 

 

 

=

 

 

1+RC RP

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

 

 

 

 

 

 

 

 

1 +

 

RC RP

 

 

 

 

 

 

 

 

 

 

¯

 

 

 

 

 

 

 

 

 

 

 

 

 

1+RC RP

 

 

 

 

 

 

 

 

 

 

¯

 

 

 

 

 

 

 

 

 

 

=

 

 

 

SL

,

 

 

(9.9)

 

 

 

 

 

 

 

¯

 

 

 

 

 

 

1 +

WuTL

 

 

 

 

 

where

 

 

 

 

 

 

 

 

 

 

¯

, Wu). A similarly style calcula-

is the allowable perturbation giving RP P×(RP

tion for additive perturbations gives

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

 

 

 

 

 

 

 

SL(RP ) =

 

 

 

SL

 

 

,

(9.10)

 

 

 

 

 

 

¯

 

 

 

 

1 +

 

WuRC SL

 

 

where

 

 

 

 

 

 

 

 

 

 

¯

 

 

 

is the allowable perturbation giving RP P+(RP , Wu).

To state a theorem on robust performance we need some notation. For R1, R2 R(s) we define a R-valued function of s by

s 7→R|1(s)| + |R2(s)| .

We denote this function by |R1| + |R2|, making a slight, but convenient, abuse of notation. Although this function is not actually in the class of functions for which we defined the H-norm, we may still denote

 

 

= ω R |

1

|

|

2

 

|

|R1

| + |R2|

(iω)

 

 

sup

R

(iω)

+

R

.

This notation and the calculations of the preceding paragraph are useful in stating and proving the following theorem.

22/10/2004 9.3 The robust performance problem 387

¯

 

 

9.22 Theorem Let RP R(s) be proper and suppose that RC R(s) renders IBIBO stable

 

¯

¯

the interconnection of Figure 9.7. Let SL and

TL denote the corresponding sensitivity and

closed-loop transfer functions.

+

¯

Let Wu RHand recall the definitions of P×(RP , Wu)

¯

¯

¯

and P+(RP , Wu) and for RP

P×(RP , Wu) or RP P+(RP , Wu) denote by SL(RP ) and

TL(RP ) the corresponding sensitivity and closed-loop transfer functions, respectively. Let

Wp R(s) have no poles or zeros in C+. The following statements hold:

 

 

 

 

 

 

 

 

(i)

R

 

provides

robust

 

performance

for

 

P

 

 

 

¯

 

, W

)

relative

to

W

 

if

and

 

only

if

C

 

 

×

(R

P

p

 

(ii)

 

¯

 

¯

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P+

 

 

 

P

 

u

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

|WuTL| + |WpSL|

 

< 1;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

 

 

¯

 

performance

for

 

 

 

 

 

(R , W )

relative

to

W

 

if

and

 

only

if

 

R

 

provides

robust

 

 

 

 

 

 

 

 

 

|WuRC SL| + |WpSL|

< 1;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u

L

 

 

p

 

L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proof (i) First we make a

use equivalent formulation of the condition

 

 

¯

 

 

 

¯

 

 

<

 

W T + W S

 

 

 

 

 

 

 

¯

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

|

|

 

 

 

 

 

1. We compute

 

 

¯

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wu(iω)T¯L(iω) + Wp(iω)S¯L(iω) < 1, ω R

|

 

 

 

 

 

|

 

 

 

 

 

 

|WuTL|

+

|WpSL|

 

< 1

 

 

 

 

 

 

 

 

|

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

|

 

 

 

 

 

 

 

 

|

 

|

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wp(iω)SL(iω)

|

 

< 1

− |

Wu(iω)TL(

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

|

 

 

 

 

¯

 

 

 

 

 

 

 

 

 

 

 

¯

 

 

 

|

,

 

 

ω

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

iω)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

 

 

, ω R

 

 

 

 

 

 

 

 

|Wu(iω)T¯L(iω)| < 1, ω R,

 

 

 

 

Wp(iω)SL(iω)

 

 

 

 

 

 

 

 

 

 

 

1 − |Wu(iω)T¯L(iω)|

 

 

 

 

 

 

 

 

 

 

 

¯

 

 

 

 

 

 

 

 

 

 

 

 

 

W

S¯

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(9.11)

 

 

 

kWuTLk< 1,

 

 

 

 

1 − |WuT¯L|

< 1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

|

 

 

¯

|

 

 

|

 

 

¯

| ¯

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

 

 

 

we then have

 

 

 

Now suppose that WuTL

+ WpSL

 

 

< 1.

 

For any allowable

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 =

|

1 + Δ(iω)Wu(

L

 

 

 

 

 

 

 

 

L

¯

 

|

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

iω)T (iω)

 

 

 

Δ(iω)T (iω)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

≤ |1 + Δ(iω)Wu(iω)TL(iω)| + |Wu(iω)RL(iω)|,

 

 

 

 

 

 

 

 

 

for all ω R. Thus we conclude that

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 − |Wu(iω)TL(iω)| ≤ |1 + Δ(iω)Wu(iω)TL(iω)|, ω R.

 

 

 

 

 

 

 

From this it follows that

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WpSL

 

 

 

 

 

 

 

 

WpSL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 − |WuT¯L|

1 + WuT¯L ∞.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From (9.11) it now follows

that

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

 

 

< 1,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

W SL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 +

 

pWuT¯L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and robust performance now

follows from (9.9).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

 

 

 

 

 

 

 

 

 

Now suppose that RC provides robust performance for P×(RP , Wu) relative to Wp.

From (9.9) and Theorem 7.18 it follows that

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

< 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

kWuT¯Lk

< 1,

 

 

 

 

W SL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 +

 

pWuT¯L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. Let ω¯ ≥ 0 be a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for all allowable

frequency for which the function

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ω

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7→

 

|Wp(iω)SL(iω)|

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 − |Wu(iω)T¯L(iω)|

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

388

 

9

Design limitations for feedback control

22/10/2004

 

 

Let θ = π

−]

W

¯

(iω¯). Using Lemma 1 from the proof of Theorem 7.18,

is maximum.

(iω¯)T

 

+

u

 

L

 

 

let Gθ

RHhave the property that ]Gθ(iω¯) = θ and |Gθ(iω¯)| = 1. Then

= Gθ is

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

allowable and the quantity Δ(iω¯)Wu(iω¯)TL(iω¯) is real and negative. Therefore, with this

allowable Δ, we have

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 − |Wu(iω¯)TL(iω¯)| = |1 + Δ(iω¯)Wu(iω¯)TL(iω¯)|.

 

 

 

 

 

 

 

 

 

It now follows that for the

 

just defined,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WpSL

 

 

 

 

 

 

 

Wp(iω¯)SL(iω¯)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

|

 

|

 

|

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 − |WuT¯L|

 

1 −

|Wu(iω¯)T¯L(iω¯)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

W

(iω¯)S¯

(iω¯)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

|

 

 

p

 

 

 

L

 

|

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

|1 + Δ(iω¯)Wu(iω¯)TL(iω¯)|

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

W SL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 +

 

pWuT¯L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus we have shown that

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

 

< 1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WpSL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 − |WuT¯L|

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

|WpS¯L| < 1.

 

 

 

 

 

 

 

 

 

 

k

 

 

 

 

¯

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

|

 

¯

|

 

 

 

 

 

 

 

 

 

 

 

W

 

T

 

 

< 1, from (9.11) it now follows that

W

T

 

+

Along with our hypothesis that

 

 

 

 

u

 

 

L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u

 

L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(ii) Since the idea here is in spirit identical to that of part (i), we are

allowed to be a

 

 

 

 

 

 

 

 

 

little

sketchy. In fact, the key is the following computation:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

 

 

 

¯

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

|Wu(iω)RC|

(iω|)S¯L(iω| )+ Wp(iω)S¯L(iω) < 1, ω R

 

 

 

 

 

 

 

 

 

 

 

WuRC SL

+ WpSL

 

 

 

 

 

< 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

|

 

 

 

 

 

 

 

 

 

|

 

 

 

|

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

|

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wp(iω)SL(iω) < 1

 

 

 

Wu(iω)RC (iω)SL(

 

 

ω

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

|

¯

 

 

 

|

 

 

− |

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

 

iω) ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

|

 

 

 

 

¯

 

 

, ω R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

W (iω)SL(iω)

 

 

 

 

|Wu(iω)RC (iω)S¯L(iω)| < 1, ω R,

 

 

 

p

 

 

 

1 − |Wu(iω)RC (iω)S¯L(iω)|

 

 

 

 

 

¯

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

W

 

S¯

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

kWuRC SLk< 1,

 

 

 

 

 

 

 

< 1.

 

 

 

 

 

 

 

 

 

 

(9.12)

 

 

 

1 − |WuRC S¯L|

 

 

 

 

 

 

 

 

 

 

 

 

 

 

|

 

 

 

¯

 

|

 

 

|

 

 

 

 

¯

 

|

 

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

W

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

First assume that

 

WuRC SL

 

+

 

L

 

 

 

 

< 1. Now we readily compute

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

− |

Wu(iω)RC (iω)SL(iω)

 

 

 

 

1 + Δ(iω)Wu(iω)RC

(iω)SL(iω)

|

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

| ≤ |

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for all ω R from which it follows that

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 >

 

 

 

W SL

 

 

 

 

 

 

 

 

 

 

 

 

WpSL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 − |WpuRC S¯L|

 

1 + WuRC S¯L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Robust performance now

follows from (9.10).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

 

 

 

 

 

 

 

 

Now suppose that RC provides robust performance for P+(RP , Wu) relative to Wp.

By (9.10) and Theorem 7.21 this means that

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

 

< 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

kWuRC S¯Lk< 1,

 

 

 

 

 

 

 

 

 

WpSL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 + WuRC S¯L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for all allowable

. Now let ω¯ ≥ 0 be a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

frequency which maximises the function

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ω

 

 

 

 

 

 

 

 

 

 

 

 

|Wp(iω)SL(iω)|

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7→1 − |Wu(iω)RC (iω)S¯L(iω)|

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22/10/2004

9.3 The robust performance problem

389

Arguing as in part (i) we may find an allowable

so that

 

 

 

¯

 

 

 

 

 

¯

 

 

1 − |Wu(iω¯)RC (iω)SL(iω¯)| = |1 + Δ(iω¯)Wu(iω¯)RC (iω)SL(iω¯)|.

 

Again arguing as in (i) it follows that

 

 

 

 

 

 

 

 

 

 

¯

< 1,

 

 

 

 

 

WpSL

 

 

 

1 − |WuRC S¯L|

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and from this it follows from (9.12) that

 

¯

¯

< 1.

 

|WuRC SL|

+ |WpSL|

 

 

 

 

 

 

 

 

 

This is an important theorem in

SISO robust control theory, and it forms the basis

 

 

 

 

 

 

for many MIMO generalisations [see Dullerud and Paganini 1999]. It is useful because it gives a single H-norm test for robust performance. For SISO systems this means that the condition can be tested by producing Bode plots, and this is something that is easily done.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯

For MIMO systems, the matter of checking the conditions that generalise |WuRC SL| +

¯

 

 

 

 

 

 

 

 

 

 

 

 

 

theorem allows

|WpSL| < 1 becomes a serious computational issue. In any event, the

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

us to state a precisely formulated design problem from that simultaneously incorporates

stability, uncertainty, and performance.

 

 

 

 

 

 

 

9.23 Robust performance problem Given

 

 

 

 

 

 

 

(i)

 

 

 

 

¯

,

 

 

 

 

 

 

 

 

 

a nominal proper plant RP

 

 

 

 

 

 

 

 

 

(ii)

a function Wu RH+ ,

 

¯

 

 

¯

 

 

 

 

 

(iii)

an uncertainty model P×(RP

, Wu) or P+(RP

, Wu), and

 

 

 

 

(iv)

a performance weight Wp R(s),

 

 

 

 

 

 

 

 

find a controller RC that

 

 

 

 

 

 

 

 

 

 

 

 

(v)

stabilises the nominal system and

 

 

 

 

 

 

 

(vi)

satisfies either

 

 

¯

 

 

¯

< 1 or

 

¯

¯

< 1, depending

|WuTL| + |WpSL|

|WuRC SL|

+ |WpSL|

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

on whether one is using

multiplicative or additive uncertainty.

 

 

 

 

 

 

 

 

 

 

 

 

 

9.24 Remarks 1. The material leading up to the given statement in the robust performance problem has its basis in the robust stability results of Doyle and Stein [1981] and Chen and Desoer [1982], and seems to have its original statement in the book of Doyle, Francis, and Tannenbaum [1990].

2.It is possible that the robust performance problem can have no solution. Indeed, it is easy to come up with plant uncertainty models and performance weights that make the problem unsolvable. An example of how to do this is the subject of Exercise E9.8.

3. A graphical interpretation of the condition

 

 

¯

¯

 

¯

 

|WuTL|

+ |WpSL| < 1 (or

|WuRC SL| +

the

¯

 

 

 

¯

 

 

|

 

p

|

 

 

 

 

 

 

WpSL

 

 

< 1) is given in Figure 9.9.

The picture says that for each frequency ω,

of

 

 

 

 

u

 

L

 

W (iω)

 

L

 

 

 

1 + i0 should not

intersect

the open disk

|

 

open| disk of radius

 

centred at

 

 

radius

 

W (iω)R (iω)

 

centred at R (iω) (a similar statement holds, of course, for

additive uncertainty)

.

 

 

 

 

 

 

 

 

 

 

 

 

In Chapter 15 we shall provide a way to find a solution to a slightly modified version of the robust performance problem. In the stated form, it appears too di cult to admit a simple solution. However, for now we can content ourselves with a couple of examples that play with the problem in an ad hoc manner.

First we look at a case where we use multiplicative uncertainty.

390

9 Design limitations for feedback control

22/10/2004

|Wp(iω)|

−1 + i0

 

¯

¯

¯Wu(iω)R¯L(iω)¯ or |Wu(iω)RC (iω)|

¯

 

RL(iω)

 

Figure 9.9 Graphical interpretation of robust performance condition

9.25 Example (Example 7.20 cont’d) Recall that we have taken

¯

1

RP (s) =

s2

as our nominal plant and had used an uncertainty description of the form

as

 

Wu(s) = s + 1

, a > 0.

In Example 7.20 we had concluded that provided that a < amax 34 , the controller

1 RC (s) = 1 + 2s + s

¯

robustly stabilises P×(RP , Wu). To make this into a robust performance problem, we need to provide a performance weight Wp. Let us suppose that we know that the reference signals will have low energy below 10rad/ sec. Given our discussion in Example 9.20, one might say

that taking

1

Wp(s) = s 2

10 + 1

is a good choice, so let us go with this. Our objective will be to decide upon the maximum value of a so that the associated robust performance problem has a solution. According to

 

 

¯

¯

< 1. In Figure 9.10

Theorem 9.22 we should choose a > 0 so that |WuTL| + |WpSL|

we show the magnitude Bode plot for WuT¯L + WpS¯L when a =

1. The peak magnitude

is about 4dB. Thus we need to reduce| a. However,| |

not|

like the case

for robust stability,

¯

¯

 

 

 

 

the quantity |WuTL| + |WpSL| is not linear in a so we cannot simply use a na¨ıve scaling

argument to determine a. The easiest way to proceed is by trial and error, reducing a until

 

magnitude Bode plot for

W

 

¯

+

W

¯

dips below 0dB. Doing this trial and error

 

 

T

L|

S

L|

the

 

1

|

 

u

 

|

p

 

¯

¯

2

is also shown

gives amax

2 .

The magnitude Bode plot for |WuTL| + |WpSL| when a =

3

22/10/2004

9.3 The robust performance problem

391

0

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

-10

 

 

 

 

 

 

 

-10

 

 

 

 

 

 

 

 

dB-20

 

 

 

 

 

 

dB

-20

 

 

 

 

 

 

 

-30

 

 

 

 

 

 

 

-30

 

 

 

 

 

 

 

 

-40

 

 

 

 

 

 

 

-40

 

 

 

 

 

 

 

 

-1.5

-1

-0.5

0

0.5

1

1.5

2

 

log ω

-1.5

-1

-0.5

0

0.5

1

1.5

2

log ω

| ¯ | | ¯ |

Figure 9.10 Bode plot of WuTL + WpSL for a = 1 (left) and for a = 23 (right)

in Figure 9.10, and one can see that it satisfies the robust performance constraint. Note that not surprisingly the maximum allowable value for a is smaller than was the case in Example 7.20 when we were merely looking to attain robust stability. The demand that our controller also meet the performance specifications places upon it further restrictions. In the current situation, if one wishes to allow greater variation in the set of plants contained in the uncertainty description, one might look into backing o on the performance demands.

Next, we give an example along similar lines that uses additive uncertainty.

9.26 Example (Example 7.23 cont’d) We proceed along the lines of the previous example, now carrying on from Example 7.23 where we used the nominal plant and controller

¯

1

 

 

1

RP (s) =

s2

, RC (s) = 1 + 2s +

s

.

To model plant uncertainty we use

 

 

 

 

 

 

 

 

Wu(s) =

as

,

 

 

 

 

 

 

 

(s + 1)2

 

 

and we use the same performance weight Wp as in Example 9.25. With this data we give

| ¯ | | ¯ |

the magnitude Bode plot for WuRC SL + WpSL in Figure 9.11 for the case when a = 1.

 

0

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

-20

 

 

 

 

 

 

 

-20

 

 

 

 

 

 

 

 

 

 

-40

 

 

 

 

 

 

 

-40

dB

 

 

 

 

 

 

dB

 

-60

 

 

 

 

 

 

-60

 

 

 

 

 

 

 

 

-80

 

 

 

 

 

 

 

-80

 

 

 

 

 

 

 

 

 

 

-100

 

 

 

 

 

 

 

-100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-120

 

-1.5

-1

-0.5

0

0.5

1

1.5

2

 

log ω

-1.5

-1

-0.5

0

0.5

1

1.5

2

log ω

 

¯

¯

Figure 9.11

1Bode plot of |WuRC SL| + |WpSL| for a = 1 (left) and

for a =

4 (right)

 

Again, the easiest way to determine the upper bound on a is by trial and error. Doing so

gives amax

1

¯

¯

4

. In Figure 9.11 is shown the Bode plot of |WuRC SL| + |WpSL| for this value

of a, and one can see that it satisfies the bounds for robust performance.

 

392

9 Design limitations for feedback control

22/10/2004

The preceding example illustrate that the matter of checking a controller for robust performance is largely a Bode plot issue. This is one thing that makes Theorem 9.22 a valuable result in this day of the easily fabricated Bode plot.

9.4 Summary

When designing a controller, the first step is typically to determine acceptable performance criterion. In this chapter, we have come up with a variety of performance measures. Let us review what we have said.

1.

Exercises for Chapter 9

393

Exercises

E9.1 Consider the pendulum/cart of Exercises E1.5 and E2.4. In this exercise, you will use the cart position as the output, and you will take as the equilibrium position the upright position for the pendulum.

(a)Compute the transfer function for the linearised system, and show that it has both an unstable pole and a nonminimum phase zero.

(b)Choose parameter values for the system, then design a feedback vector f that makes the closed-loop system IBIBO stable.

(c)For the closed-loop system, use Proposition 3.40 to compute the step response. Verify that the bounds of Proposition 9.6 are satisfied.

E9.2 Poisson integral formulae for the pendulum on a cart.

Vidyasagar [1986] proposes a definition of undershoot di erent from the one we use, his definition being as follows. Let (N, D) be a BIBO stable, strictly proper, steppable SISO linear

system in input/output form and let r > 0 be the smallest integer for which 1(N,Dr) (0) 6= 0. Note that limt→∞ 1N,D(t) = TN,D(0). The system (N, D) exhibits immediate undershoot

if 1(N,Dr) (0)TN,D(0) < 0. Thus, the system exhibits immediate undershoot when the initial response heads o in a di erent direction that is attained by the steady-state response. In the next exercise, you will explore this alternative definition of undershoot.

E9.3 Let (N, D) be a BIBO stable strictly proper, steppable SISO linear system in input/output form and let r > 0 be the smallest integer for which 1(N,Dr) (0) 6= 0.

(a)Prove the following theorem of Vidyasagar [1986].

Theorem (N, D) exhibits immediate undershoot (in the sense of the above definition) if and only if N has an odd number of positive real roots.

Hint: Factor the numerator and denominator into irreducible factors, and use the fact that

1(r)N,D(0) = lim srTN,D(s).

s→∞

Now consider the system

(N(s), D(s)) = (s2 − 2s + 1, s3 + 2s2 + 2s + 2).

For this system, answer the following questions.

(b)Verify that this system is BIBO stable.

(c)According to the theorem of part (a), will the system exhibit immediate undershoot?

(d)Produce the step response for the system. Does it exhibit immediate undershoot according to the definition of Vidyasagar? Would you say it exhibits undershoot?

E9.4 Let RL be a proper BIBO stable loop gain with the property that the standard unity gain feedback loop (e.g., Figure 9.3) is IBIBO stable. Also suppose that RL has a single have the sensitivity function fit under the shaded area

real zero z C+. We wish to

 

3

 

 

in Figure 9.6, and we take ω1 =

4

ω2. We also define 2

so that ω2 is the closed-loop

 

1

 

 

 

 

bandwidth: 2 = 2 .

 

 

 

 

(a) For various

zvalues of 1,

plot the lower bound for kSLkgiven by (9.7) as a

function of

 

.

 

 

 

 

ωb

 

 

 

 

394

9 Design limitations for feedback control

22/10/2004

(b) Would you expect better performance for the closed-loop system for larger of

smaller ratios z ?

ωb

The following exercise should be done after you have designed a state feedback vector for the pendulum/cart system. An arbitrary such state feedback vector is constructed in Exercise E10.11, and an optimal state feedback vector is determined in Exercise E14.7. For the following exercise, you may use the parameter values, and the state feedback vector from either of those exercises.

E9.5 Consider the pendulum/cart system of Exercises E1.5 and E2.4, and let f R4 be a stabilising state feedback vector, and consider the loop gain Rf as defined in Exercise E7.11.

(a)For this loop gain, produce the magnitude Bode plot of the corresponding sensitivity and complementary sensitivity functions.

(b)Verify that the bounds of Corollaries 9.16 and 9.17 are satisfied, as well as that of (9.7).

The next two exercises give conditions for robust performance for the uncertainty description presented in Section 4.5, but that we have not discussed in detail in the text. The conditions for robust stability for these descriptions you derived in Exercises E7.12 and E7.13. For these plant uncertainty models, it turns out to be convenient to give the performance specifications not on the sensitivity function SL, but on the closed-loop transfer function TL.

Thus the performance criterion for the following two exercises should take the form kWpTLk< 1.

With this as backdrop, you may readily adapt the proof of Theorem 9.22 to prove the conditions for robust performance in the next two exercises.

E9.6 For the plant uncertainty description of Exercise E7.12, and the performance criterion

 

kWpTLk< 1 (see above), show that a controller RC stabilising the nominal plant

 

¯

provides robust performance if and only if

 

¯

¯

¯

< 1.

 

RP

|WuRP SL| + |WpTL|

 

 

 

 

 

 

 

 

 

E9.7

For the plant uncertainty description of

Exercise E7.13, and the performance criterion

 

 

 

 

 

 

 

 

kWpTLk< 1 (see above), show that a controller RC stabilising the nominal plant

 

¯

provides robust performance if and only if

 

¯

¯

< 1.

 

RP

|WuSL| + |WpTL|

E9.8

 

¯

¯

 

 

 

 

 

 

 

 

 

 

 

 

robust performance

 

Use the fact that SL + TL = 1 to show that in order for the

 

 

problem to have a solution, it must be the case that

 

 

 

 

 

 

min{Wp(iω), Wu(iω)} < 1,

ω R.

 

 

Exercises for Chapter 9

395

Соседние файлы в предмете Электротехника