Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
3.Dynamics.pdf
Скачиваний:
29
Добавлен:
23.08.2013
Размер:
742.21 Кб
Скачать

3.7 Linear Time-Invariant Systems

3.7 Linear Time-Invariant Systems

The model

dx

Ax Bu

 

 

dt

3.37

E

 

D

 

y Cx Du

is one of the standard models in control. In this section we will present an in depth treatment. Let us first recall that x is the state vector, u the control, y the measurement. The model is nice because it can represent systems with many inputs and many outputs in a very compact form. Because of the advances in numeric linear algebra there are also much powerful software for making computations. Before going into details we will present some useful results about matrix functions. It is assumed that the reader is familiar with the basic properties of matrices.

Matrix Functions

Some basic facts about matrix functions are summarized in this section. Let A be a square matrix, since it is possible to compute powers of matrices we can define a matrix polynomial as follows

f DAE a0 I a1 A . . . an An

Similarly if the function f DxE has a converging series expansion we can also define the following matrix function

f DAE a0 I a1 A . . . an An . . .

The matrix exponential is a nice useful example which can be defined as

eAt I At 12 DAtE2 . . . n1! Antn . . .

Differentiating this expression we find

At

 

1

 

 

 

1

 

 

 

de

A A2t

A3t2 . . .

 

 

 

Antn1

. . .

dt

2

D

n

1 !

 

 

 

 

 

E

 

AD I At 12 DAtE2 . . . n1! Antn . . .E AeAt

The matrix exponential thus has the property

 

deAt

D3.38E

dt AeAt eAt A

Matrix functions do however have other interesting properties. One result is the following.

125

Chapter 3. Dynamics

THEOREM 3.3—CAYLEY-HAMILTON

Let the n n matrix A have the characteristic equation

detDλ I AE λn a1λn1 a2λn2 . . . an 0

then it follows that

detDλ I AE An a1 An1 a2 An2 . . . an I 0

A matrix satisfies its characteristic equation.

PROOF 3.2

If a matrix has distinct eigenvalues it can be diagonalized and we have A T1ΛT. This implies that

A2 T1ΛT T1ΛT T1Λ2T

A3 T1ΛT A2 T1ΛT T1Λ2T T1Λ3T

and that An T1ΛnT. Since λi is an eigenvalue it follows that

λni a1λni 1 a2λni 2 . . . an 0

Hence

Λni a1Λni 1 a2Λni 2 . . . an I 0

Multiplying by T1 from the left and T from the right and using the relation Ak T1ΛkT now gives

An a1 An1 a2 An2 . . . an I 0

The result can actually be sharpened. The minimal polynomial of a matrix is the polynomial of lowest degree such that nDAE 0. The characteristic polynomial is generically the minimal polynomial. For matrices with common eigenvalues the minimal polynomial may, however, be different from the characteristic polynomial. The matrices

A1

 

0

1

,

A2

 

0

1

 

 

1

0

 

 

 

1

1

have the minimal polynomials

n1DλE λ 1, n2DλE Dλ 1E2

A matrix function can thus be written as

f DAE c0 I c1 A . . . ck1 Ak1

where k is the degree of the minimal polynomial.

126

3.7 Linear Time-Invariant Systems

Solving the Equations

Using the matrix exponential the solution to D3.37E can be written as

Z t

xDtE eAt xD0E eADtτ E BuDτ ED3.39E

0

To prove this we differentiate both sides and use the property 3.38E of the matrix exponential. This gives

dxdt AeAt xD0E Z0

t

AeADtτ E BuDτ Edτ BuDtE Ax Bu

which prove the result. Notice that the calculation is essentially the same as for proving the result for a first order equation.

Input-Output Relations

It follows from Equations D3.37E and D3.39E that the input output relation is given by

Z t

yDtE CeAt xD0E eADtτ E BuDτ Edτ DuDtE

0

Taking the Laplace transform of D3.37E under the assumption that xD0E 0 gives

sX DsE AX DsE BU DsE YDsE C X DsE DU DsE

Solving the first equation for X DsE and inserting in the second gives

X DsE FsI AG1 BU DsE

YDsE CFsI AG1 B D U DsE

The transfer function is thus

GDsE CFsI AG1 B D

D3.40E

we illustrate this with an example.

127

Chapter 3. Dynamics

EXAMPLE 3.30—TRANSFER FUNCTION OF INVERTED PENDULUM

The linearized model of the pendulum in the upright position is characterized by the matrices

A

8 1 0 9

,

B 8 1 9

,

C 8 1 0 9 , D 0.

 

>

0

1

>

 

>

0

>

 

: ;

 

>

 

 

>

 

>

 

>

 

 

:

 

 

;

 

:

 

;

 

 

The characteristic polynomial of the dynamics matrix A is

8 > s

det DsI AE det >

: 1

9

1 > > 2

s ; s 1

Hence

 

 

 

 

 

 

 

 

8

 

 

9

 

 

 

 

 

 

 

DsI AE1

 

1

 

det

s

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s2

1

1

s

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

>

 

 

>

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

>

 

 

>

 

 

 

 

 

 

 

The transfer function is thus

 

 

 

 

 

 

 

 

:

 

 

;

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

s

1

9

1

8

0

9

 

 

1

 

GDsE CFsI AG1 B

 

 

 

 

1 0

9

8 1 s

 

 

 

 

 

s2

1

 

 

 

1

s2

1

 

 

8

 

 

 

>

 

 

>

 

> >

 

 

 

 

 

 

:

 

 

 

; >

 

 

>

 

> >

 

 

 

 

 

 

 

 

 

 

 

 

 

 

:

 

 

;

 

: ;

 

 

 

 

Transfer function and impulse response remain invariant with coordinate transformations.

˜ t

Ce˜

At˜ B˜

 

CT1 eT AT1 tT B

 

CeAt B

t

nD E

 

 

 

 

nD E

and

˜ D E ˜D − ˜ E1 ˜ 1D − 1E1

G s C sI A B CT sI T AT T B

X S CDsI AE1 B GDsE

Consider the system

dxdt Ax Bu y Cx

To find the input output relation we can differentiate the output and we

128

D3.41E
129
˜ 1, C CT
˜ , B T B
˜
D D

 

 

 

 

 

 

 

 

 

 

 

3.7 Linear Time-Invariant Systems

obtain

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y Cx

 

 

 

 

 

 

 

 

 

 

 

d y

C

dx

C Ax C Bu

 

 

 

 

 

 

 

dt

dt

 

 

 

 

 

 

d2 y

C A

dx

C B

du

C A2 x C ABu C B

du

 

dt2

 

dt

dt

dt

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dn y

C An x C An1 Bu C An2 B

du

. . . C B

dn1u

 

dtn

 

dt

dtn 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let ak be the coefficients of the characteristic equation. Multiplying the first equation by an, the second by an1 etc we find that the input-output relation can be written as.

dn y

a1

dn1 y

. . . an y B1

dn1u

B2

dn2u

. . . Bnu,

dtn

dtn1

 

dtn1

dtn2

where the matrices Bk are given by.

B1 C B

B2 C AB a1C B

B3 C A2 B a1 C AB a2 C B

.

.

.

Bn C An1 B a1 C An1 B . . . an1 C B

Coordinate Changes

The components of the input vector u and the output vector y are unique physical signals, but the state variables depend on the coordinate system chosen to represent the state. The elements of the matrices A, B and C also depend on the coordinate system. The consequences of changing coordinate system will now be investigated. Introduce new coordinates z by the transformation z T x, where T is a regular matrix. It follows from D3.37E that

dz D E 1 ˜ ˜

dt

T Ax Bu T AT z T Bu Az Bu

1 ˜

y Cx DU CT z Du Cz Du

The transformed system has the same form as D3.37E but the matrices A, B and C are different

˜ 1, A T AT

Chapter 3. Dynamics

It is interesting to investigate if there are special coordinate systems that gives systems of special structure.

The Diagonal Form Some matrices can be transformed to diagonal form, one broad class is matrices with distinct eigenvalues. For such matrices it is possible to find a matrix T such that the matrix T AT1 is a diagonal i.e.

1

 

 

8

λ1

λ2

 

.

0 9

 

 

 

>

 

 

 

 

>

 

 

 

>

 

 

 

 

 

>

 

 

 

>

 

 

 

 

 

>

 

 

Λ

>

 

 

 

 

 

>

T AT

 

>

 

.

 

 

 

>

 

>

0

 

 

λn

>

 

 

 

>

 

.

 

>

 

>

 

 

 

 

>

 

 

 

>

 

 

 

 

 

>

 

 

 

>

 

 

 

 

 

>

 

 

 

>

 

 

 

 

 

>

 

 

 

>

 

 

 

 

 

>

 

 

 

>

 

 

 

 

 

>

 

 

 

:

 

 

 

 

 

;

The transformed system then becomes

 

 

 

>

 

.

 

 

dz

 

8

λ1

λ2

 

.

 

 

 

>

 

 

 

 

 

 

>

 

 

 

 

 

 

 

>

 

 

 

 

 

 

 

>

 

 

 

 

 

 

 

>

 

 

 

 

 

 

 

>

0

 

 

 

 

 

 

>

 

 

.

 

dt

 

>

 

 

 

>

 

 

 

 

 

 

>

 

 

 

 

 

 

 

>

 

 

 

 

 

 

 

>

γ 1

γ 2 . . .

y

 

:

 

 

8

 

 

 

 

 

 

 

:

 

 

 

 

 

 

9

 

8

β

2

9

 

0

 

> z

 

>

β

1

> u

 

 

 

 

.

 

 

 

 

>

>

.

 

>

 

 

 

>

 

>

 

 

>

 

 

 

>

 

>

 

 

>

D E

 

 

>

 

>

 

 

>

 

 

>

 

>

 

 

>

 

λn

>

 

>

β

n

>

 

 

 

>

 

>

 

>

 

 

 

>

 

>

 

 

>

 

 

 

>

 

>

.

 

>

3.42

 

 

>

 

>

 

>

 

 

>

 

>

 

>

 

 

>

 

>

 

 

>

 

γ n

 

;

 

:

 

 

;

 

;

 

 

 

 

 

 

9 z Du

 

 

 

 

The transfer function of the system is

n

β iγ i

 

X

 

GDsE i 1

s λi

D

 

 

 

Notice appearance of eigenvalues of matrix A in the denominator.

Reachable Canonical Form Consider a system described by the n-th order differential equation

dn y

a1

dn1 y

. . . an y b1

dn1u

. . . bnu

dtn

dtn1

 

dtn1

To find a representation in terms of state model we first take Laplace transforms

Y s

E

b1sn1 . . . b1s bn

U s

E

b1sn1 . . . b1s bn

U s

E

sn a1sn1 . . . an1s an

ADsE

D

D

D

130

 

 

 

 

 

 

 

3.7 Linear Time-Invariant Systems

Introduce the state variables

 

sn1

 

 

 

 

 

 

 

 

 

X1DsE

 

U DsE

 

 

 

 

 

 

 

 

 

ADsE

 

 

 

 

 

 

 

 

 

 

sn2

1

 

 

 

 

 

 

 

X2DsE

 

U DsE

 

X1DsE

 

 

 

 

 

ADsE

s

 

 

 

 

 

 

sn2

1

 

 

1

 

 

D3.43E

X3DsE

 

 

U DsE

 

X

1DsE

 

X2DsE

A s

 

s2

s

.

D

E

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

1

 

 

 

1

 

XnDsE

 

U DsE

 

X1DsE

 

Xn1DsE

 

ADsE

sn1

s

 

Hence

Dsn a1sn1 . . . an1s anEX1DsE sn1U DsE

1

1

 

sX1DsE a1 X1DsE a2

 

X1DsE . . . an

 

U DsE

s

sn1 X1DsE

sX1DsE a1 X2DsE a2 X2DsE . . . an XnDsE U DsE

Consider the equation for X1DsE, dividing by sn1 we get

sX1DsE a1 X2DsE a2 X2DsE . . . an XnDsE U DsE

Conversion to time domain gives

dxdt1 a1 x1 a2 x2 . . . an xn u

D3.43E also implies that

1

X2DsE s X1DsE

1

X3DsE s X2DsE

.

.

.

1

XnDsE s Xn1

131

Chapter 3. Dynamics

Transforming back to the time domain gives

dxdt2 x1 dxdt3 x2

.

.

.

dxdtn xn1

With the chosen state variables the output is given by

YDsE b1 X1DsE b2 X2DsE . . . bn XnDsE

Collecting the parts we find that the equation can be written as

 

 

 

8

1

1

0

2

 

 

 

>

a

 

a

 

dz

 

0

 

1

 

 

 

 

>

 

 

 

 

 

>

 

 

 

 

 

 

 

>

 

 

 

 

 

 

 

>

 

 

 

 

 

 

 

> .

 

 

 

 

 

 

> .

 

 

 

 

 

 

>

 

 

 

 

 

 

 

>

 

 

 

 

 

 

 

>

 

 

 

 

dt

 

>

0

 

0

 

 

>

 

 

> .

 

 

 

 

 

 

>

 

 

 

 

 

 

 

>

 

 

 

 

 

 

 

>

 

 

 

 

 

 

 

>

 

 

 

 

y

 

>

 

 

b2 . . .

 

: b1

 

 

 

8

 

 

 

 

 

 

 

:

 

 

 

 

. . .

 

0

0

 

9

 

8

0

9

 

 

an

1

 

an

>

 

>

1

>

 

 

 

0

 

 

0

 

> z

 

>

0

> u

 

 

 

 

 

 

 

 

>

 

>

 

>

 

 

 

 

 

 

 

 

>

 

>

 

>

 

 

 

 

 

 

 

 

>

 

> .

>

3.44

 

 

 

 

 

 

 

>

 

>

 

>

 

 

 

 

 

 

 

>

 

> .

>

D E

 

 

 

 

 

 

 

>

 

> .

>

 

 

 

 

 

 

 

>

 

>

 

>

 

 

 

 

 

 

 

 

>

 

>

 

>

 

 

 

 

 

 

 

 

>

 

>

 

>

 

 

 

1

 

 

0

 

>

 

>

0

>

 

 

 

 

 

 

>

 

>

>

 

 

 

 

 

 

 

 

>

 

>

 

>

 

 

 

 

 

 

 

 

>

 

>

 

>

 

 

 

 

 

 

 

 

>

 

>

 

>

 

 

 

 

 

 

 

 

>

 

>

 

>

 

 

 

 

 

 

z

 

>

 

>

 

>

 

n

1

n

9

 

;

 

:

 

;

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

b

;

 

 

 

Du

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The system has the characteristic polynomial

 

 

 

>

s a

 

a . . .

an 1

an

>

 

 

 

1

s2

0

0

 

 

 

8

1

9

n

 

 

>

 

 

 

 

>

 

D E

 

>

 

 

 

 

>

 

 

> .

 

 

 

 

>

 

 

 

>

 

 

 

 

 

>

 

 

 

> .

 

 

 

 

>

 

 

 

> .

 

 

 

 

>

 

 

 

>

0

 

1

0

0

>

D s

det

>

 

>

>

 

>

 

 

 

>

 

 

 

 

 

>

 

 

 

>

0

 

0

1

s

>

 

 

 

>

 

>

 

 

 

>

 

 

 

 

>

 

 

 

>

 

 

 

 

>

 

 

 

>

 

 

 

 

 

>

 

 

 

>

 

 

 

 

 

>

 

 

 

>

 

 

 

 

 

>

 

 

 

:

 

 

 

 

 

;

Expanding the determinant by the last row we find that the following recursive equation for the polynomial DnDsE.

DnDsE sDn1DsE an

It follows from this equation that

DnDsE sn a1sn1 . . . an1s an

132

3.7 Linear Time-Invariant Systems

Transfer function

b1sn1 b2sn2 . . . bn

GDsE sn a1sn1 a2sn2 . . . an D

The numerator of the transfer function GDsE is the characteristic polynomial of the matrix A. This form is called the reachable canonical for for reasons that will be explained later in this Section.

Observable Canonical Form The reachable canonical form is not the only way to represent the transfer function

G s

b1sn1 b2sn2 . . . bn

E sn a1sn1 a2sn2 . . . an

D

another representation is obtained by the following recursive procedure. Introduce the Laplace transform X1 of first state variable as

b1sn1 b2sn2 . . . bn

X1 Y sn a1sn1 a2sn2 . . . an U

then

Dsn a1sn1 a2sn2 . . . anEX1 Db1sn1 b2sn2 . . . bnEU

Dividing by sn1 and rearranging the terms we get

sX1 a1 X1 b1 U X2

where

sn1 X2 −Da2sn2 a3sn3 . . . an X1b2sn2 b3sn3 . . . bnEU

Dividing by sn2 we get

sX2 a2 X2 b2 U X3

where

sn2 X3 −Da3sn3 a4n4 . . . an X1 b3sn3 . . . bnEU

Dividing by sn3 gives

sX3 a3 X1?b3U X4

133

Chapter 3. Dynamics

Proceeding in this we we finally obtain

Xn an X1 b1 U

Collecting the different parts and converting to the time domain we find that the system can be written as

 

 

 

 

 

8 a2

0 1

. . .

0 9

 

8 b2

9

 

 

 

 

 

 

>

 

 

a1

1 0

0

>

 

b1

>

 

 

dz

 

 

.

 

 

 

 

 

 

> .

 

 

 

 

 

 

> .

 

 

 

 

 

> z

 

> .

> u

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

> .

 

 

 

 

 

>

 

> .

>

 

 

 

 

 

 

>

 

 

 

 

 

 

 

 

>

 

>

>

 

 

dt

 

>

 

 

 

 

 

 

 

 

>

 

>

>

3.45

 

 

 

 

 

>

 

 

 

 

 

 

 

 

>

 

>

>

 

 

 

 

 

>

 

 

 

 

 

 

 

 

>

 

>

>

 

 

 

 

 

 

>

 

 

 

 

 

 

 

 

>

 

>

>

 

 

 

 

 

 

>

 

 

 

 

 

 

>

 

>

>

 

 

 

 

 

 

>

 

 

 

 

 

 

 

>

 

>

>

 

 

 

 

 

 

>

 

 

an

0 0

 

 

0

>

 

>

>

 

 

 

 

 

 

>

 

 

 

 

>

 

> bn

>

 

 

 

 

 

 

>

 

an 1

0 0

 

 

1

>

 

>

>

D E

 

 

 

 

 

>

 

 

 

>

 

> bn 1

>

 

 

 

 

 

>

 

 

 

 

 

 

>

 

>

>

 

 

 

 

 

 

>

 

 

 

 

 

 

>

 

>

>

 

 

 

 

 

 

>

 

 

 

 

 

 

 

 

>

 

>

>

 

 

 

 

 

 

>

 

 

 

 

 

 

 

 

>

 

>

>

 

 

y

 

:

 

 

 

 

 

9

z

 

;

 

:

;

 

 

 

 

8

1 0

0 . . . 0

 

Du

 

 

 

 

 

 

 

 

 

:

;

 

 

 

 

 

 

Transfer function

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G

s

 

 

 

 

 

b1sn1 b2sn2 . . . bn

D

 

 

E sn a1sn1 a2sn2 . . . an

 

 

 

D

 

 

The numerator of the transfer function GDsE is the characteristic polynomial of the matrix A.

Consider a system described by the n-th order differential equation

dn y

a1

dn1 y

. . . an y b1

dn1u

. . . bnu

dtn

dtn1

 

dtn1

Reachability

We will now disregard the measurements and focus on the evolution of the state which is given by

sxdt Ax Bu

where the system is assumed to be or order n. A fundamental question is if it is possible to find control signals so that any point in the state space can be reached. For simplicity we assume that the initial state of the system is zero, the state of the system is then given by

Z t Z t

xDtE eADtτ E BuDτ Edτ eADτ E BuDt τ E

0 0

It follows from the theory of matrix functions that

e0DsE 1DsE . . . An1α n1DsE

134

3.7 Linear Time-Invariant Systems

and we find that

Z t Z t

xDtE B α 0Dτ EuDt τ Edτ AB α 1Dτ EuDt τ E

0 0

Z t

. . . An1 B α n1Dτ EuDt τ E

0

The right hand is thus composed of a linear combination of the columns

of the matrix.

;

:

Wr 8 B AB . . .

An1 B 9

To reach all points in the state space it must thus be required that there are n linear independent columns of the matrix Wc. The matrix is therefor called the reachability matrix. We illustrate by an example.

EXAMPLE 3.31—REACHABILITY OF THE INVERTED PENDULUM

The linearized model of the inverted pendulum is derived in Example 3.29. The dynamics matrix and the control matrix are

A

8

0

1

9

,

B

8

0

9

1 0

1

 

>

 

 

>

 

 

 

>

 

>

 

>

 

 

>

 

 

 

>

 

>

The reachability matrix is :

 

 

;

 

 

 

:

 

;

 

 

 

 

>

0

1

>

 

 

 

 

 

Wr

>

 

 

>

 

 

D3.46E

 

 

:

1

0

;

 

 

 

 

8

9

 

 

This matrix has full rank and we can conclude that the system is reachable.

Next we will consider a the system in D3.44E, i.e

 

 

8

a

 

a

 

. . . an 1

dz

1

1

0

2

0

>

 

 

 

 

 

 

 

>

 

 

 

 

 

 

 

>

 

 

 

 

 

 

 

>

 

 

 

 

 

 

 

> .

 

 

 

 

 

 

> .

 

 

 

 

 

 

>

0

 

1

 

0

 

 

>

 

 

 

 

>

 

 

 

 

>

 

 

 

 

 

dt

>

 

 

 

 

 

> .

 

 

 

 

 

 

>

 

 

 

 

 

 

 

>

 

 

 

 

 

 

 

>

 

 

 

 

 

 

 

>

 

 

 

 

 

 

 

>

 

 

 

 

 

 

 

:

0

 

0

 

1

 

 

>

 

 

0 n

9

 

8

0

9

 

 

 

 

a

>

 

>

1

>>

 

˜

 

˜

0

>

 

>

0

> u

 

Az

 

Bu

> z

 

>

 

 

 

>

 

>

 

>

 

 

 

 

 

>

> .

>

 

 

 

>

 

>

 

>

 

 

 

 

 

>

 

> .

>

 

 

 

 

 

>

 

> .

>

 

 

 

 

 

>

 

>

 

>

 

 

 

 

 

>

 

>

 

>

 

 

 

 

 

>

 

>

 

>

 

 

 

 

0

>

 

>

0

>

 

 

 

 

>

 

>

>

 

 

 

 

 

>

 

>

 

>

 

 

 

 

 

>

 

>

 

>

 

 

 

 

 

>

 

>

 

>

 

 

 

 

 

>

 

>

 

>

 

 

 

 

 

>

 

>

 

>

 

 

 

 

 

;

 

:

 

;

 

 

 

 

The inverse of the reachability matrix is

 

 

 

8

1

a

a . . .

an

9

 

 

1

 

0 11

a121 . . .

an1

D E

 

 

> .

 

 

 

>

 

 

 

> .

 

 

 

>

 

 

 

 

>

 

 

 

 

>

 

 

 

 

>

 

 

 

 

>

 

W˜ r

 

 

>

 

 

 

 

>

 

 

 

>

0

0

0 . . .

1

>

3.47

 

 

>

>

 

 

> .

 

 

 

>

 

 

 

>

 

 

 

 

>

 

 

 

 

>

 

 

 

 

>

 

 

 

 

>

 

 

 

 

>

 

 

 

 

>

 

 

 

 

>

 

 

 

 

>

 

 

 

 

>

 

 

 

 

:

 

 

 

 

;

135

 

 

 

 

 

 

 

 

 

Chapter 3.

Dynamics

 

 

 

 

 

To show this we consider the product

 

8 w0 w1 × × ×

 

9

 

8 B˜

AB˜ ˜ × × ×

A˜ n1 B

9 Wr1

 

wn1

where

:

 

 

;

 

:

 

;

 

 

w0

˜

 

 

 

 

 

 

 

B

 

 

 

 

 

 

 

w1

˜

˜ ˜

 

 

 

 

 

 

a1 B AB

 

 

 

 

.

.

.

˜ × × × wn1 an1 B an2 AB

The vectors wk satisfy the relation

wk ak w˜ k1

Iterating this relation we find that

A˜ n1 B

 

 

 

 

 

 

 

 

8 0 1 0 .. .. ..

0 9

 

 

 

 

 

 

 

 

 

1

0

0

 

0

>

 

 

w0 w1 × × ×

wn 1

 

 

 

 

> .

 

 

 

 

 

 

 

 

 

 

> .

 

 

 

 

>

 

8

 

 

9

 

 

> .

 

 

 

 

>

 

 

 

 

 

>

 

 

 

 

>

 

 

 

 

 

 

 

 

 

>

 

 

 

 

>

 

:

 

 

;

 

 

>

 

 

 

 

>

 

 

 

 

 

> 0

0

0

. . .

1

>

 

 

 

 

 

 

 

 

 

>

 

 

 

>

 

 

 

 

 

 

 

 

 

>

 

 

 

 

>

 

 

 

 

 

 

 

 

 

>

 

 

 

 

>

 

 

 

 

 

 

 

 

 

>

 

 

 

 

>

 

 

 

 

 

 

 

 

 

>

 

 

 

 

>

 

 

 

D

 

E

 

 

 

>

 

 

 

 

> ˜

 

which shows that the matrix

 

 

 

indeed the inverse of W .

3.47

 

is

 

 

 

 

 

 

:

 

 

 

 

;

r

Systems That are Not Reachable

 

It is useful of have an intuitive

understanding of the mechanisms that make a system unreachable. An example of such a system is given in Figure 3.32. The system consists of two identical systems with the same input. The intuition can also be demonstrated analytically. We demonstrate this by a simple example.

EXAMPLE 3.32—NON-REACHABLE SYSTEM

Assume that the systems in Figure 3.32 are of first order. The complete system is then described by

 

dx1

 

x1 u

 

dt

 

dx2

 

x2 u

 

dt

The reachability matrix is

8

 

1

9

Wr

1

 

 

 

>

1

1

>

 

 

 

 

 

 

 

>

 

 

>

 

 

 

:

 

 

;

This matrix is singular and the system is not reachable.

136

3.7 Linear Time-Invariant Systems

S

u

S

Figure 3.32 A non-reachable system.

Coordinate Changes

It is interesting to investigate how the reachability matrix transforms when the coordinates are changed. Consider the system in D3.37E. Assume that the coordinates are changed to z T x. It follows from D3.41E that the dynamics matrix and the control matrix for the transformed system are

˜ T AT1 A

˜

B T B

The reachability matrix for the transformed system then becomes

W˜ r

8 B˜

A˜ B˜ . . . A˜ n1 B˜

9

 

 

:

 

;

 

We have

AB˜ ˜

T AT1T B T AB

A˜ 2 B˜

DT AT1E2T B T AT1T AT1T B T A2 B

 

.

 

 

 

 

.

 

 

 

 

.

 

 

 

˜ n

˜

T A

n

B

A

B

 

and we find that the reachability matrix for the transformed system has the property

W˜ r

8 B˜

AB˜ ˜ . . . A˜ n1 B˜

9

T

8 B AB . . .

An1 B

9

T Wr

 

:

 

;

 

:

 

;

 

This formula is very useful for finding the transformation matrix T.

137

Chapter 3. Dynamics

Observability

When discussing reachability we neglected the output and focused on the state. We will now discuss a related problem where we will neglect the input and instead focus on the output. Consider the system

dx Ax

dt D3.48E y Cx

We will now investigate if it is possible to determine the state from observations of the output. This is clearly a problem of significant practical interest, because it will tell if the sensors are sufficient.

The output itself gives the projection of the state on vectors that are rows of the matrix C. The problem can clearly be solved if the matrix C is invertible. If the matrix is not invertible we can take derivatives of the

output to obtain.

ddty C dtsc C Ax

From then derivative of the output we thus get the projections of the state on vectors which are rows of the matrix CA. Proceeding in this way we

get

8

 

 

dyy

 

9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

>

 

 

 

 

 

>

 

 

 

 

 

 

 

 

 

dt

 

 

 

 

 

C A

 

 

>

 

 

 

2

 

 

 

 

>

8

 

9

 

>

 

 

 

 

 

 

 

>

 

 

 

 

 

 

>

 

d y

 

>

 

 

 

 

 

2

 

 

>

 

 

>

>

 

 

 

 

>

 

>

 

 

 

 

 

 

 

 

>

 

 

 

 

 

 

>

 

 

 

 

 

 

 

 

>

>

CA

 

> x

 

 

 

 

2

 

 

 

 

>

 

 

 

 

 

 

>

>

 

 

 

 

 

>

 

>

 

dt

 

>

>

 

 

.

 

 

>

 

>

 

 

 

 

 

 

 

 

>

>

 

 

 

 

>

 

>

 

 

 

 

 

 

 

 

>

>

 

 

 

 

 

>

 

>

 

 

 

 

 

 

 

 

>

>

 

 

.

 

 

>

 

> .

 

 

 

 

>

>

 

 

.

 

 

>

 

> .

 

 

 

 

>

>

 

 

 

 

 

>

 

>

 

 

 

 

 

 

 

 

>

>

 

 

 

 

 

>

 

> .

 

 

 

 

>

>

 

 

n 1

>

 

>

 

n 1

 

>

>

 

 

>

 

>

 

 

>

> C A

>

 

>

 

 

 

 

 

 

 

 

>

>

 

 

 

 

 

>

 

> d y

>

>

 

 

 

 

 

>

 

>

 

 

 

 

 

 

 

 

>

>

 

 

 

 

 

>

 

>

 

 

 

 

 

 

 

 

>

>

 

 

 

 

 

>

 

>

 

 

 

 

 

>

>

 

 

 

 

 

>

 

 

 

 

n 1

 

 

 

 

 

 

 

> dt

 

 

>

:

 

 

 

 

 

;

 

>

 

 

 

 

 

>

 

 

 

 

 

 

 

 

>

 

 

 

 

 

 

 

 

>

 

 

 

 

 

 

 

 

>

 

 

 

 

 

 

 

 

>

 

 

 

 

 

 

 

 

:

 

 

 

 

 

 

 

 

;

 

 

 

 

 

 

 

We thus find that the

state can be determined if the matrix

>

 

 

 

 

 

 

 

 

>

 

 

 

 

9

 

 

 

 

 

 

 

 

 

 

 

8

CA

 

 

 

 

 

 

 

 

 

 

 

 

>

C

 

 

>

 

 

 

 

 

 

 

 

o

 

>

 

 

 

 

>

 

 

 

 

 

 

 

 

 

 

 

>

 

.

 

 

>

D E

 

 

 

 

 

 

 

 

 

>

 

 

 

>

 

 

 

 

 

 

 

 

 

 

>

 

 

 

 

>

 

 

 

 

 

 

 

 

 

 

 

>

 

.

 

 

>

 

 

 

 

 

 

 

 

 

 

 

>

 

.

 

 

>

 

 

 

 

 

 

 

 

 

 

 

>

CA

 

 

>

 

 

 

 

 

W

 

>

 

 

>

3.49

 

 

 

 

 

>

 

1

>

 

 

 

 

 

 

 

 

 

 

>

 

n

 

>

 

 

 

 

 

 

 

 

 

 

 

>

 

 

 

 

>

 

 

 

 

 

 

 

 

 

 

 

> CA

 

>

 

 

 

 

 

 

 

 

 

 

 

>

 

 

 

 

>

 

 

 

 

 

 

 

 

 

 

 

>

 

 

 

 

>

 

 

 

 

 

 

 

 

 

 

 

>

 

 

 

 

>

 

 

 

 

 

 

 

 

 

 

 

>

 

 

 

 

>

 

 

 

 

 

 

 

 

 

 

 

>

 

 

 

 

>

 

 

 

 

 

 

 

 

 

 

 

:

 

 

 

 

;

 

has n independent rows. Notice that because of the Cayley-Hamilton equation it is not worth while to continue and take derivatives higher than dn1/dtn1. The matrix Wo is called the observability matrix. A system is called observable if the observability matrix has full rank. We illustrate with an example.

138

3.7 Linear Time-Invariant Systems

S

Σ

y

 

S

 

Figure 3.33 A non-observable system.

EXAMPLE 3.33—OBSERVABILITY OF THE INVERTED PENDULUM

The linearized model of inverted pendulum around the upright position is described by D3.41E. The matrices A and C are

A

8

0

1

9

,

 

C 8 1 0 9

1 0

 

 

>

 

 

>

 

 

 

: ;

 

>

 

 

>

 

 

 

 

:

 

 

;

 

 

 

 

The observability matrix is

 

 

 

 

 

 

 

 

 

 

 

 

>

1

0

>

 

 

 

Wo

 

>

0

1

>

 

 

 

8

9

 

 

 

 

 

:

 

 

;

which has full rank. It is thus possible to compute the state from a measurement of the angle.

A Non-observable System

It is useful to have an understanding of the mechanisms that make a system unobservable. Such a system is shown in Figure 3.33. Next we will consider the system in D3.45E on observable canonical form, i.e.

 

 

 

8 a2

0 1

. . .

0 9

 

8 b2

9

 

 

 

>

 

 

a1

1 0

0

>

 

b1

>

dz

 

.

 

 

 

 

 

 

> .

 

 

 

> .

 

 

 

 

 

> z

 

> .

> u

 

 

 

 

 

 

 

 

 

 

 

 

> .

 

 

 

 

 

>

 

> .

>

dt

>

 

 

 

 

 

 

 

 

>

 

>

>

>

 

 

 

 

 

 

 

 

>

>

>

 

 

 

>

 

 

 

 

 

 

 

 

>

 

>

>

 

 

 

>

 

 

 

 

 

 

 

 

>

 

>

>

 

 

 

>

 

 

 

 

 

 

 

 

>

 

>

>

 

 

 

>

 

 

 

 

 

 

>

 

>

>

 

 

 

>

 

 

 

 

 

 

 

>

 

>

>

 

 

 

>

 

 

an

0 0

 

 

0

>

 

>

>

 

 

 

>

 

 

 

 

>

 

> bn

>

 

 

 

>

 

 

 

 

 

 

 

 

>

 

>

>

 

 

 

>

 

 

 

 

 

 

>

 

>

>

 

 

 

>

 

 

0 0

 

 

1

>

 

>

>

 

 

 

>

 

an 1

 

 

>

 

> bn 1

>

 

 

 

>

 

 

 

 

 

 

 

 

>

 

>

>

 

 

 

>

 

 

 

 

 

 

 

 

>

 

>

>

y

 

:

 

 

 

 

 

9

z

 

;

 

:

;

 

 

8

 

 

 

 

0 . . . 0

 

 

 

 

 

 

 

 

:

1 0

;

 

 

Du

 

 

 

 

 

 

 

 

 

 

 

 

 

A straight forward but tedious calculation shows that the inverse of the

139

Chapter 3. Dynamics

observability matrix has a simple form. It is given by

 

 

 

8

a1

1

0

. . .

0

9

 

 

 

>

1

0

0

. . .

0

>

W

1

 

a

a

1

. . .

0

 

 

>

2

1

 

 

 

>

o

 

 

>

 

 

 

 

 

>

 

 

 

>

 

 

 

 

 

>

 

 

 

>

 

 

 

 

 

>

 

 

 

> .

 

 

 

 

>

 

 

 

> .

 

 

 

 

>

 

 

 

> .

 

 

 

 

>

 

 

 

>

 

 

 

 

 

>

 

 

 

>

 

 

 

 

 

>

 

 

 

>

 

 

 

 

 

>

 

 

 

>

 

an 2

an 3

. . .

1

>

 

 

 

> an 1

>

 

 

 

>

 

 

>

 

 

 

>

 

 

>

 

 

 

>

 

 

 

 

 

>

 

 

 

>

 

 

 

 

 

>

 

 

 

>

 

 

 

 

 

>

 

 

 

:

 

 

 

 

 

;

This matrix is always invertible. The system is composed of two identical systems whose outputs are added. It seems intuitively clear that it is not possible to deduce the states from the output. This can also be seen formally.

Coordinate Changes

It is interesting to investigate how the observability matrix transforms when the coordinates are changed. Consider the system in D3.37E. Assume that the coordinates are changed to z T x. It follows from D3.41E that the dynamics matrix and the output matrix are given by

A˜

T AT1

C˜

CT1

The observability matrix for the transformed system then becomes

˜

Wo

 

8

C˜ A˜

 

9

 

 

˜

 

 

 

>

C

 

>

 

˜ ˜ 2

 

 

>

CA

 

>

 

>

 

 

>

 

>

 

 

>

> .

 

>

 

>

 

 

>

 

> .

 

>

 

> .

 

>

 

>

 

 

>

 

>

 

 

>

 

>

 

 

>

 

>

˜ ˜ n

1

>

 

> CA

 

>

 

>

 

 

>

 

>

 

 

>

 

>

 

 

>

 

>

 

 

>

 

>

 

 

>

 

:

 

 

;

We have

˜ ˜ CT1T AT1 C AT1 CA

˜ ˜ 2 CT1DT AT1E2 CT1T AT1T AT1 C A2T1 CA

.

.

.

˜ ˜ n n 1

CA C A T

140

3.7 Linear Time-Invariant Systems and we find that the observability matrix for the transformed system has

the property

 

8

C˜ A˜

 

9

 

 

 

 

 

 

˜

 

 

 

 

 

o

 

>

C

 

>

 

 

o

 

 

>

 

 

>

 

 

 

 

> .

 

>

 

 

 

 

>

 

 

>

 

 

 

 

 

> .

 

>

 

 

 

 

 

> .

 

>

 

 

 

˜

 

>

˜ ˜ 2

 

>

1

 

1

 

>

 

>

 

W

 

>

C A

 

>

 

 

W T

 

>

 

> T

 

 

 

 

>

 

 

>

 

 

 

 

 

>

˜ ˜ n

1

>

 

 

 

 

 

> CA

 

>

 

 

 

 

 

>

 

 

>

 

 

 

 

 

>

 

 

>

 

 

 

 

 

>

 

 

>

 

 

 

 

 

>

 

 

>

 

 

 

 

 

>

 

 

>

 

 

 

 

 

:

 

 

;

 

 

 

This formula is very useful for finding the transformation matrix T.

Kalman's Decomposition

The concepts of reachability and observability make it possible understand the structure of a linear system. We first observe that the reachable states form a linear subspace spanned by the columns of the reachability matrix. By introducing coordinates that span that space the equations for a linear system can be written as

d

xc

 

 

A11

A12

xc

 

B1

 

 

xc¯

 

 

 

 

xc¯

 

 

u

dt

0

A22

0

where the states xc are reachable and xc¯ are non-reachable. Similarly we find that the non-observable or quiet states are the null space of the observability matrix. We can thus introduce coordinates so that the system can be written as

d

xo

 

A11

0

xo

 

 

xo¯

 

A21

A22 x0¯

 

dt

 

 

y D C1

xo

 

 

 

 

0 E xo¯

 

where the states xo are observable and xo¯ not observable DquietE Combining the representations we find that a linear system can be transformed to the form

 

 

A11

0

dx

0 A21

A22

 

B

 

 

 

B

0

0

 

@

0

0

dt B

y D C1 0

C2

A13

0

1

 

B1

1

A23

A24

0 B2

A33

0

C

B

0

C

C x B

C u

 

 

A

@

 

A

A43

A44

C

B

0

C

0 E x

141

Chapter 3. Dynamics

u

Σ

y

Soc

 

Soc- Soc-

Soc--

Figure 3.34 Kalman's decomposition of a system.

where the state vector has been partitioned as

0 xro 1T

B x C B ro¯ C x B C @ xro¯ A

xr¯o¯

A linear system can thus be decomposed into four subsystems.

Sro reachable and observable

Sro¯ reachable not observable

Sro¯ not reachable observable

Sr¯o¯ not reachable not observable

This decomposition is illustrated in Figure 3.34. By tracing the arrows in the diagram we find that the input influences the systems Soc and Soc¯ and that the output is influenced by Soc and Soc¯. The system So¯c¯ is neither connected to the input nor the output.

The transfer function of the system is

GDsE C1DsI A11E1 B1

D3.50E

It is thus uniquely given by the subsystem Sro.

The Cancellation Problem Kalman's decomposition resolves one of the longstanding problems in control namely the problem of cancellation of poles and zeros. To illustrate the problem we will consider a system described by the equation.

142

Соседние файлы в предмете Электротехника