
- •Раздел I. Общие сведения о нефти
- •1.2. Неорганическая концепция
- •Глава 2. Общие свойства нефтей
- •2.1. Физические свойства
- •2.2. Классификация нефтей
- •2.3. Химические элементы и соединения в нефтях
- •2.3.1. Углеводородные соединения
- •2.3.2. Гетеросоединения
- •2.4. Производные нефтей
- •Глава 3. Природный и попутный нефтяной газы
- •Раздел II. Химия нефти
- •Глава 4. Общая характеристика органичесеих соединений и органических химических реакций
- •4.1. Классификация органических соединений
- •4.2. Изомерия органических соединений
- •4.3. Классификация органических реакций
- •Глава 5. Предельные углеводороды
- •5.1. Алканы (парафины)
- •5.2. Циклоалканы (нафтены)
- •Глава 6. Непредельные углеводороды (алкены)
- •Глава 7. Ароматические углеводороды (арены)
- •7.1. Бензол и его производные
- •7.2. Кислородсодержащие органические соединения. Фенолы
- •Глава 8. Органические соединения, содержащие серу и азот
- •8.1. Меркаптаны (тиоспирты, тиолы)
- •8.2. Гетероциклы, содержащие серу и азот
- •Раздел III. Промышленная переработка нефти
- •Глава 9. Подготовка нефти к переработке
- •9.1. Очистка от механических примесей
- •9.2. Стабилизация
- •9.3. Обезвоживание и обессоливание
- •9.3.1. Влияние солей в процессах переработки и использования нефти и нефтепродуктов
- •9.3.2. Эмульсии нефти с водой. Эмульгаторы
- •9.3.3. Основные методы обессоливания нефтей
- •Глава 10. Первичная переработка нефти
- •10.1. Законы д.П. Коновалова
- •10.1.1. Диаграммы состав-температура кипения
- •10.1.2. Дистилляция двойных смесей
- •10. 1. 3. Ректификация
- •10.1.4. Детонационная стойкость бензина
- •Глава 11. Вторичная переработка нефти
- •11.1. Крекинг
- •11.2. Риформинг
- •11.3.Алкилирование
- •Глава 12. Очистка нефтепродуктов
- •12.1. Очистка светлых нефтепродуктов
- •12.2. Очистка масляных фракций
- •Глава 13. Присадки к нефтепродуктам
- •13.1. Присадки к топливам
- •13.2. Присадки к маслам
- •Раздел IV. Физико-химические методы исследования нефтепродуктов
- •Глава 14. Нефтепродукты и их применеие
- •Глава 15. Определение физических свойств нефтепродуктов
- •15.1. Определение вязкости
- •15.2. Определение плотности
- •15.3. Определение фракционного состава
- •15.4. Определение давления паров нефтепродуктов
- •15.5. Определение температуры помутнения
- •15.6. Определение температуры застывания
- •15.7. Определение температуры плавления
- •15.8. Определение температуры вспышки
- •Глава 16. Определение химических свойств нефтепродуктов
- •16.1. Определение содержания серы
- •16.2. Содержание твердого парафина
- •16.3. Определение содержания смол
- •16.4. Определение содержания органических кислот
- •16.5. Определение стабильности бензина
- •16.5.1. Определение индукционного периода бензина
- •16.5.2. Определение йодного числа
- •16.6. Коррозионные свойства топлив и масел
- •Раздел V. Эксплуатационные свойства топлив
- •Глава 17. Оценка эксплуатационных свойств топлив
- •17.1. Прокачиваемость
- •17.2. Текучесть
- •17.3. Испаряемость
- •17.4. Воспламеняемость
- •17.5. Энергоемкость
- •17.6. Устойчивость горения
- •17.7. Склонность к нагарообразованию
- •17.8. Склонность к образованию низкотемпературных отложений
- •Глава 18. Совместимось с конструкционными материалами
- •18.1. Коррозионная активность топлив
- •18.2. Воздействие на резины и герметики
- •18.3. Противоизносные свойства
- •18.4. Охлаждающие свойства
- •18.5. Токсичность реактивных и моторных топлив
- •Раздел VI. Нефтехимия
- •Глава 19. Химическая переработка парафиновых углеводородов
- •Глава 20. Химическая переработка непредельных углеводородов
- •Глава 21. Химическая переработка ароматических и нафтеновых углеводородов
- •Раздел VII. Нефтегазовый комплекс и экология
- •Глава 22. Воздействие продуктов сгорания топлив и горючих газов на атмосферу
- •Глава 23. Воздействие нефти и нефтепродуктов на гидросферу
- •Глава 24. Некоторые способы защиты окружающей среды
- •Раздел I. Общие сведения о нефтях и горючих газах. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
- •Глава 16. Определение химических свойств нефтепродуктов.98
- •Раздел V. Эксплуатационные свойства топлив……………………………………………………………..102
- •Глава 17. Оценка эксплуатационных свойств топлив. . . . . . .102
- •Глава 18. Совместимость с конструкционными материала-
10.1.1. Диаграммы состав-температура кипения
Если изучается зависимость температур кипения от состава раствора, то строят диаграмму состав-температура кипения при p=const.
Та из двух жидкостей, которая обладает большим давлением пара, кипит при более низкой температуре. Получают диаграмму, которая является зеркальным отображением предыдущей в координатах давление-состав.
pt=const t p=const
tВ
ж+п ж+п
tА
пар жидкость
А В А В
а б
Рис. 10.4. Диаграммы: а) состав-давление пара и б) состав-температура кипения двухкомпонентных смесей
Рассмотрим более подробно диаграмму состав-температура кипения (рис. 10.5).
Смесь двух жидкостей кипит в некотором интервале температур, так как по мере выкипания ее состав меняется.
t p=const
пар F
ж+п C
жидкость •M
AmB
состав
Рис. 10.5. Диаграмма состав-температура кипения двойной жидкой системы без экстремума
На диаграмме (рис. 10.5) нижняя линия
(кривая жидкости) изображает
температуры начала кипения растворов
разных составов, а верхняя линия (кривая
пара) – температуры конца кипения.
Точкии
- температуры кипения чистых компонентов
А и В.
Изотермические сопряженные точки на
этих кривых Cи,Fи
отображают
состав жидкой и парообразной фаз,
находящихся в равновесии друг с другом.
Испарение раствора Mсоставаmначинается при
температуре
(точкаCна рис. 10.5). По мере
испарения сопряженные составы раствора
и пара изменяются вдоль кривых жидкости
и пара; одновременно уменьшается
количество жидкости, а количество пара
увеличивается (плечи рычагов,
соответствующие жидким фазам, изображены
сплошными линиями, а паровым фазам –
пунктирными). При температуре
испарение заканчивается и при более
высокой температуре существует только
пар.
10.1.2. Дистилляция двойных смесей
Дистилляцией называется процесс разделения раствора на составные части путем перегонки.В основе метода лежит различие в составах равновесных жидкостей и пара. Разделение осуществляется тем легче, чем больше различаются по составу равновесные жидкость и пар.
t
пар
ж+п
CRD
жидкость
A N2 N1 N N4 N3 N5 B
состав
Рис. 10.6. Диаграмма состав-температура кипения двойной жидкой системы без экстремума
Рассмотрим двухкомпонентную жидкую систему, кипящую без образования азеотропа (рис. 10.6).
Если нагревать раствор состава N1, то кипение его начинается при температуреt1. Пар, равновесный с этим раствором, имеет составN3. Так как он богаче компонентом В по сравнению с жидким раствором, то после испарения некоторого количества раствора, остающаяся часть его становится более богатой компонентом А и имеет, например, составN2. Раствор такого состава не может кипеть, пока температура не поднимется доt2. Пар, находящийся в равновесии с этим раствором, имеет составN4. Он тоже богаче компонентом В, чем раствор. Поэтому остаток раствора обогащается компонентом А и температура кипения повышается. В результате в остатке будет содержаться практически чистый компонент А и температура кипения достигнетtA.
Обратимся теперь к парам. Если пар, выделяющийся из раствора, например пар состава N3, сконденсирован в другой сосуд и полученный конденсат, в свою очередь, подвергнут дистилляции, то он будет кипеть при температуреt3и пар его будет еще более богат компонентом В (составN5). Продолжая такой процесс конденсации и дистилляции, можно в конце концов достигнуть того, что выделяющийся пар будет представлять собой практически чистый компонент В. Таким образом, можно разделить двойную жидкую смесь путем дистилляции на чистые компоненты.
В системах, содержащих азеотропы, осуществить разделение раствора на чистые компоненты таким путем нельзя.
Рассмотрим диаграмму состав-температура кипения с минимумом (рис. 10.7). Если раствор, имеющий состав, промежуточный между А и С, например N1, подвергнуть дистилляции, то пар, находящийся в равновесии с раствором, будет иметь составN2, то есть будет содержать больше компонента В, чем раствор. Остаток же, обогащаясь компонентом А, будет кипеть при более высокой температуре, напримерt2.
Продолжая дистилляцию, можно получить в остатке чистый компонент А. Чистый же компонент В из раствора состава N1получить аналогичным путем не удается.
t
пар
m
жидкость
A N1 N2CN4 N3 B
состав
Рис. 10.7. Диаграмма состав-температура кипения системы с азеотропной точкой
В самом деле, при повторной конденсации и дистилляции пара можно достигнуть состава С. Пар такого состава при конденсации дает жидкость такого же состава С, и новая дистилляция приведет опять к пару того же состава С, так как в азеотропных растворах состав пара и жидкости одинаков. Таким образом, раствор состава N1можно разделить перегонкой только на чистый компонент А и азеотропный раствор С. Этот вывод относится ко всем растворам, имеющим состав между А и С.
Рассуждая подобным же образом, можно показать, что любой раствор, обладающий составом, промежуточным между С и В, путем дистилляции можно разделить только на чистый компонент В и опять-таки на азеотропный раствор состава С.
К системам этого типа относится, например, система вода-этиловый спирт. Она обладает минимумом температур кипения (78,13 °С) при составе 95,57 % спирта (при атмосферном давлении). Этиловый спирт в чистом состоянии путем такой дистилляции выделить невозможно. Однако состав азеотропа изменяется при изменении внешнего давления. Например, при достаточно низком давлении методом дистилляции можно получить чистый этанол.
Рассмотренный выше процесс разделения раствора путем отбора отдельных частей (фракций) конденсата и последующей повторной их фракционной конденсации и дистилляции дает возможность в системах, не содержащих азеотропов, разделить раствор на чистые компоненты. Этот метод разделения называется дробной илифракционнойперегонкой.
Автоматизированный процесс дробной перегонки называется ректификацией.