
- •Основные процессы жизненного цикла Приобретение
- •Поставка
- •Разработка
- •Эксплуатация
- •Сопровождение
- •Адаптация стандарта
- •Ibm Rational ProjectConsole
- •Ibm Rational SoDa
- •1. Основы программных требований
- •Методология разработки сложных программных систем
- •Технология освоения и внедрения case-средств
- •Методика разработки функциональных моделей в среде idef0
- •14.1 Общие положения
- •14.2 Классификация функций, моделируемых блоками idef0
- •14.3 Организационно-технические структуры и механизмы idef0-моделей
- •14.4 Управление - особый вид процесса, операции, действия
- •14.5 Типизация функциональных моделей и idef0-диаграмм
- •Информационное моделирование в методике idef1x Концепция idef1x
- •Инструменты разработки программных средств.
- •Инструментальные среды разработки и сопровождения программных средств.
- •Инструментальные среды программирования.
- •Понятие компьютерной технологии разработки программных средств и ее рабочие места.
- •Инструментальные системы технологии программирования.
- •Структура программы на ассемблере
- •Синтаксис ассемблера
- •Директивы сегментации
- •Алфавит языка
- •Комментарии
- •Простые типы
- •Примечание
- •Сложные типы
- •Описание простых типов
- •Допустимое использование
- •Тип bit
- •Допустимое использование
- •Тип std_logic
- •Допустимое использование
- •Перечислимый тип
- •Пример:
- •Допустимое использование
- •Пример:
- •Тип severity_level
- •Тип character
- •Массивы
- •Примеры:
- •Строки, битовые строки и агрегаты
- •Подтипы
- •Пример:
- •Другие примеры:
- •Пример:
- •Общие сведения
- •Переопределенные типы (redefined types)
- •Методика верификациии синтезируемого описания (Verification methodology)
- •Верификация комбинационных устройств (Combinational verification)
- •Верификация последовательностных устройств (Sequential verification)
- •Моделирование элементов аппаратуры (Modeling hardware elements)
- •Синхронные последовательностные схемы (Edge-sensitive sequential logic) Типы тактового сигнала (Clock signal type)
- •Определение фронта тактового сигнала
- •Передний фронт
- •Задний фронт
- •Описание синхронных последовательностных устройств
- •Использование оператора if
- •Использование конструкции wait
- •Асинхронные сброс и установка (asynchronous set-reset)
- •Последовательностные узлы с потенциальным управлением (level-sensitive sequential logic)
- •Логика с третьим состоянием и моделирование шин (Three-state and bus modeling)
- •Описание комбинационных логических схем (Modeling combinational logic)
- •Директивы компилятора (псевдокомментарии, Pragmas)
- •Атрибуты (Attributes)
- •Атрибут компилятора enum_encoding
- •Метакомментарии (Metacomments)
Технология освоения и внедрения case-средств
Современная технология освоения и внедрения CASE-средств базируется в основном на стандартах-рекомендациях IEEE (IEEE Std 1348-1995. IEEE Recommended Practice for the Adoption of CASE Tools и IEEE Std 1209-1992. IEEE Recommended Practice for the Evaluation and Selection of CASE Tools). Процесс внедрения CASE-средств состоит из следующих этапов:
определение потребностей в CASE-средствах;
оценка и выбор CASE-средств;
выполнение пилотного проекта;
практическое внедрение CASE-средств.
С внедрением CASE-средств обычно связывают большие ожидания. В ряде случаев эти ожидания оказываются нереалистичными и приводят к неудаче при внедрении. К таким ожиданиям можно отнести следующие:
понимание проектных спецификаций неподготовленными пользователями;
сокращение персонала, связанного с информационной технологией;
уменьшение степени участия в проектах высшего руководства и менеджеров, а также экспертов предметной области, уменьшение степени участия пользователей в процессе разработки приложений;
немедленное повышение продуктивности деятельности организации;
достижение абсолютной полноты и непротиворечивости спецификаций;
автоматическая генерация прикладных систем из проектных спецификаций;
немедленное снижение затрат, связанных с информационной технологией;
снижение затрат на обучение.
Реализм в оценке ожидаемых затрат имеет особенно важное значение, поскольку он позволяет правильно оценить отдачу от инвестиций. Затраты на внедрение CASE-средств обычно недооцениваются. Среди конкретных статей затрат на внедрение можно выделить следующие:
специалисты по планированию внедрения CASE-средств;
выбор и установка;
учет специфических требований персонала;
приобретение CASE-средств и обучение;
настройка;
подготовка документации, стандартов и процедур использования средств;
интеграция с другими средствами и существующими данными;
освоение средств разработчиками;
технические средства;
обновление версий.
Важно также осознавать, что улучшение деятельности организации, являющееся следствием использования CASE-технологии, может быть неочевидным в течение самого первого проекта, использующего новую технологию. Продуктивность и другие характеристики деятельности организации могут первоначально даже ухудшиться, поскольку на освоение новых средств и внесение необходимых изменений в процесс разработки требуется некоторое время. Таким образом, ожидаемые результаты должны рассматриваться с учетом вероятной отсрочки в улучшении проектных характеристик.
Потребности организации в CASE-средствах должны соразмеряться с реальной ситуацией на рынке или собственными возможностями разработки. В процессе обзора рынка важным является приобретение опыта работы с литературой по CASE-средствам, посещение конференций и семинаров, проводимых поставщиками (их перечень приведен в конце пособия) и пользователями CASE-средств. Возможность интеграции CASE-средства с другими средствами, используемыми (или планируемыми к использованию) организацией, может являться важным фактором при выполнении данного обзора. Кроме того, важно получить достоверную информацию о средствах, основанную на реальном пользовательском опыте и сведениях от пользовательских групп.
Оценка CASE-средств производится для определения их функциональности и качества и последующего выбора. Оценка выполняется в соответствии с конкретными критериями, ее результаты включают как объективные, так и субъективные данные по каждому средству.
Список CASE-средств - возможных кандидатов формируется из различных источников: обзоров рынка ПО, информации поставщиков, обзоров CASE-средств и других подобных публикаций.
Оценка и накопление соответствующих данных может выполняться следующими способами:
анализ CASE-средств и документации поставщика;
опрос реальных пользователей;
анализ результатов проектов, использовавших данные CASE-средства;
просмотр демонстраций и опрос демонстраторов;
выполнение тестовых примеров;
применение CASE-средств в пилотных проектах;
анализ любых доступных результатов предыдущих оценок.
Процессы оценки и выбора тесно взаимосвязаны друг с другом. По результатам оценки цели выбора и/или критерии выбора и их веса могут потребовать модификации. В таких случаях может потребоваться повторная оценка. Когда анализируются окончательные результаты оценки и к ним применяются критерии выбора, может быть рекомендовано приобретение CASE-средства или набора CASE-средств. Альтернативой может быть отсутствие адекватных CASE-средств, в этом случае рекомендуется разработать новое CASE-средство, модифицировать существующее или отказаться от внедрения.
Типичный процесс оценки и/или выбора может использовать набор критериев различных типов. Структура набора критериев приведена на рисунке. Каждый критерий должен быть выбран и адаптирован экспертом с учетом особенностей конкретного процесса. В большинстве случаев только некоторые из множества критериев оказываются приемлемыми для использования, при этом также добавляются дополнительные критерии. Так, например, в качестве основных критериев выбора CASE-средств для крупных проектов ИС могут быть приняты следующие критерии:
Поддержка полного жизненного цикла ИС с обеспечением эволюционности ее развития.
Обеспечение целостности проекта и контроля за его состоянием.
Независимость от программно-аппаратной платформы и СУБД.
Открытая архитектура
Качество технической поддержки в России, стоимость приобретения и поддержки, опыт успешного использования
Простота освоения и использования
В результате выполненного анализа может оказаться, что ни одно доступное средство не удовлетворяет в нужной мере всем основным критериям и не покрывает все потребности проекта. В этом случае может применяться набор средств, позволяющий построить на их базе единую технологическую среду.
Перед полномасштабным внедрением выбранного CASE-средства в организации выполняется пилотный проект, целью которого является экспериментальная проверка правильности решений, принятых на предыдущих этапах, и подготовка к внедрению.
Пилотный проект представляет собой первоначальное реальное использование CASE-средства в предназначенной для этого среде и обычно подразумевает более широкий масштаб использования CASE-средства по отношению к тому, который был достигнут во время оценки. Пилотный проект должен обладать многими из характеристик реальных проектов, для которых предназначено данное средство. Он преследует следующие цели:
подтвердить достоверность результатов оценки и выбора;
определить, действительно ли CASE-средство годится для использования в данной организации, и если да, то определить наиболее подходящую область его применения;
собрать информацию, необходимую для разработки плана практического внедрения;
приобрести собственный опыт использования CASE-средства.
Важной функцией пилотного проекта является принятие решения относительно приобретения или отказа от использования CASE-средства. Провал пилотного проекта позволяет избежать более значительных и дорогостоящих неудач в дальнейшем, поскольку пилотный проект обычно связан с приобретением относительно небольшого количества лицензий и обучением узкого круга специалистов.
После того, как CASE-средство выбрано, оно должно быть приобретено, интегрировано в проектную среду и настроено в соответствии с требованиями пилотного проекта. Границы этой деятельности зависят от тех действий, которые имели место в процессе оценки и выбора, а также от степени модификации средства, необходимой для его использования в проекте.
Может оказаться, что в рамках пилотного проекта средства не оправдали тех ожиданий, которые на них возлагались, или же в пилотном проекте они использовались удовлетворительно, однако опыт показал, что дальнейшие вложения в средства не гарантируют успеха. Возможным решением о внедрении должно быть одно из следующих:
Внедрить средство.В этом случае рекомендуемый масштаб внедрения должен быть определен в терминах структурных подразделений и предметной области.
Выполнить дополнительный пилотный проект.Такой вариант должен рассматриваться только в том случае, если остались конкретные неразрешенные вопросы относительно внедрения CASE-средства в организации. Новый пилотный проект должен быть таким, чтобы ответить на эти вопросы.
Отказаться от средства.В этом случае причины отказа от конкретного средства должны быть определены в терминах потребностей организации или критериев, которые остались неудовлетворенными. Перед тем, как продолжить деятельность по внедрению CASE-средств, потребности организации должны быть пересмотрены на предмет своей обоснованности.
Отказаться от использования CASE-средств вообще.Пилотный проект может показать, что организация либо не готова к внедрению CASE-средств, либо автоматизация данного аспекта процесса создания и сопровождения ПО не дает никакого эффекта для организации. В этом случае причины отказа от CASE-средств должны быть также определены в терминах потребностей организации или критериев, которые остались неудовлетворенными. При этом необходимо понимать отличие этого варианта от предыдущего, связанного с недостатками конкретного средства.
В конечном счете, опыт, полученный при внедрении CASE-средств, может отчасти изменить цели организации и ожидания, возлагаемые на CASE-средства. Например, организация может сделать вывод, что средства целесообразно использовать для большего или меньшего круга пользователей и процессов в цикле создания и сопровождения ПО. Такие изменения в ожиданиях зачастую могут дать положительные результаты, но могут также привести к внесению соответствующих корректив в определение степени успешного внедрения CASE-средств в данной организации.
Характеристика современных CASE-средств
Современные CASE-средства охватывают обширную область поддержки многочисленных технологий проектирования ИС: от простых средств анализа и документирования до полномасштабных средств автоматизации, покрывающих весь жизненный цикл ПО.
В разряд CASE-средств попадают как относительно дешевые системы для персональных компьютеров с весьма ограниченными возможностями, так и дорогостоящие системы для неоднородных вычислительных платформ и операционных сред. Так, современный рынок программных средств насчитывает около 300 различных CASE-средств, наиболее мощные из которых так или иначе используются практически всеми ведущими западными фирмами.
Полный комплекс CASE-средств, обеспечивающий поддержку жизненного цикла ПО, содержит следующие компоненты;
репозиторий, являющийся основой CASE-средства. Он должен обеспечивать хранение версий проекта и его отдельных компонентов, синхронизацию поступления информации от различных разработчиков при групповой разработке, контроль метаданных на полноту и непротиворечивость;
графические средства анализа и проектирования, обеспечивающие создание и редактирование иерархически связанных диаграмм (потоков данных, "сущность-связь" и др.), образующих модели ИС;
средства разработки приложений, включая языки 4GL и генераторы кодов;
средства конфигурационного управления;
средства документирования;
средства тестирования;
средства управления проектом;
средства реинжиниринга.
Все современные CASE-средства могут быть классифицированы в основном по типам и категориям. Классификация по типам отражает функциональную ориентацию CASE-средств на те или иные процессы ЖЦ. Классификация по категориям определяет степень интегрированности по выполняемым функциям и включает отдельные локальные средства, решающие небольшие автономные задачи (tools), набор частично интегрированных средств, охватывающих большинство этапов жизненного цикла ИС (toolkit) и полностью интегрированные средства, поддерживающие весь ЖЦ ИС и связанные общим репозиторием. Помимо этого, CASE-средства можно классифицировать по следующим признакам:
применяемым методологиям и моделям систем и БД;
степени интегрированности с СУБД;
доступным платформам.
Классификация по типам в основном совпадает с компонентным составом CASE-средств и включает следующие основные типы:
средства анализа (Upper CASE), предназначенные для построения и анализа моделей предметной области (Design/IDEF, BPwin);
средства анализа и проектирования (Middle CASE), поддерживающие наиболее распространенные методологии проектирования и использующиеся для создания проектных спецификаций (Vantage Team Builder, Designer/2000, Silverrun, PRO-IV, CASE.Аналитик). Выходом таких средств являются спецификации компонентов и интерфейсов системы, архитектуры системы, алгоритмов и структур данных;
средства проектирования баз данных, обеспечивающие моделирование данных и генерацию схем баз данных (как правило, на языке SQL) для наиболее распространенных СУБД. К ним относятся ERwin, S-Designor и DataBase Designer (ORACLE). Средства проектирования баз данных имеются также в составе CASE-средств Vantage Team Builder, Designer/2000, Silverrun и PRO-IV;
средства разработки приложений. К ним относятся средства 4GL (Uniface, JAM, PowerBuilder, Developer/2000, New Era, SQLWindows, Delphi и др.) и генераторы кодов, входящие в состав Vantage Team Builder, PRO-IV и частично - в Silverrun;
средства реинжиниринга, обеспечивающие анализ программных кодов и схем баз данных и формирование на их основе различных моделей и проектных спецификаций. Средства анализа схем БД и формирования ERD входят в состав Vantage Team Builder, PRO-IV, Silverrun, Designer/2000, ERwin и S-Designor. В области анализа программных кодов наибольшее распространение получают объектно-ориентированные CASE-средства, обеспечивающие реинжиниринг программ на языке С++ (Rational Rose, Object Team).
Вспомогательные типы включают:
средства планирования и управления проектом (SE Companion, Microsoft Project и др.);
средства конфигурационного управления (PVCS, SCCS и др.);
средства тестирования (Quality Works и др.).
На сегодняшний день Российский рынок программного обеспечения располагает следующими наиболее развитыми CASE-средствами:
Vantage Team Builder (Westmount I-CASE);
Designer/2000;
Silverrun;
ERwin+BPwin;
S-Designor;
CASE.Аналитик;
Rational Rose.
Кроме того, на рынке постоянно появляются как новые для отечественных пользователей системы, так и новые версии и модификации перечисленных систем.
CASE-средство Silverrun американской фирмы Сomputer Systems Advisers, Inc. (CSA) используется для анализа и проектирования ИС бизнес-класса и ориентировано в большей степени на спиральную модель ЖЦ. Оно применимо для поддержки любой методологии, основанной на раздельном построении функциональной и информационной моделей (диаграмм потоков данных и диаграмм "сущность-связь").
Silverrun имеет модульную структуру и состоит из четырех модулей, каждый из которых является самостоятельным продуктом.
Модуль построения моделей бизнес-процессов в форме диаграмм потоков данных (BPM - Business Process Modeler) позволяет моделировать функционирование обследуемой организации или создаваемой ИС. Модуль концептуального моделирования данных (ERX- Entity-Relationship eXpert) обеспечивает построение моделей данных "сущность-связь", не привязанных к конкретной реализации. Модуль реляционного моделирования (RDM - Relational Data Modeler) позволяет создавать детализированные модели "сущность-связь", предназначенные для реализации в реляционной базе данных. Менеджер репозитория рабочей группы (WRM - Workgroup Repository Manager) применяется как словарь данных для хранения общей для всех моделей информации, а также обеспечивает интеграцию модулей Silverrun в единую среду проектирования.
Платой за высокую гибкость и разнообразие изобразительных средств построения моделей является такой недостаток Silverrun, как отсутствие жесткого взаимного контроля между компонентами различных моделей (например, возможности автоматического распространения изменений между DFD различных уровней декомпозиции). Следует, однако, отметить, что этот недостаток может иметь существенное значение только в случае использования каскадной модели ЖЦ ПО.
Для автоматической генерации схем баз данных у Silverrun существуют мосты к наиболее распространенным СУБД: Oracle, Informix, DB2, Ingres, Progress, SQL Server, SQLBase, Sybase. Для передачи данных в средства разработки приложений имеются мосты к языкам 4GL: JAM, PowerBuilder, SQL Windows, Uniface, NewEra, Delphi. Все мосты позволяют загрузить в Silverrun RDM информацию из каталогов соответствующих СУБД или языков 4GL.
Система Silverrun реализована на трех платформах - MS Windows, Macintosh и OS/2 Presentation Manager - с возможностью обмена проектными данными между ними.
Vantage Team Builder представляет собой интегрированный программный продукт, ориентированный на реализацию каскадной модели ЖЦ ПО и поддержку полного ЖЦ ПО.
Vantage Team Builder обеспечивает выполнение следующих функций:
проектирование диаграмм потоков данных, "сущность-связь", структур данных, структурных схем программ и последовательностей экранных форм;
проектирование диаграмм архитектуры системы - SAD (проектирование состава и связи вычислительных средств, распределения задач системы между вычислительными средствами, моделирование отношений типа "клиент-сервер", анализ использования менеджеров транзакций и особенностей функционирования систем в реальном времени);
генерация кода программ на языке 4GL целевой СУБД с полным обеспечением программной среды и генерация SQL-кода для создания таблиц БД, индексов, ограничений целостности и хранимых процедур;
программирование на языке C со встроенным SQL;
управление версиями и конфигурацией проекта;
многопользовательский доступ к репозиторию проекта;
генерация проектной документации по стандартным и индивидуальным шаблонам;
экспорт и импорт данных проекта в формате CDIF (CASE Data Interchange Format).
Vantage Team Builder поставляется в различных конфигурациях в зависимости от используемых СУБД (ORACLE, Informix, Sybase или Ingres) или средств разработки приложений (Uniface). Конфигурация Vantage Team Builder for Uniface отличается от остальных некоторой степенью ориентации на спиральную модель ЖЦ ПО за счет возможностей быстрого прототипирования, предоставляемых Uniface. Для описания проекта ИС используется достаточно большой набор диаграмм. При построении всех типов диаграмм обеспечивается контроль соответствия моделей синтаксису используемых методов, а также соответствия одноименных элементов и их типов на различных типах диаграмм.
Конфигурация Vantage Team Builder for Uniface обеспечивает совместное использование двух систем в рамках единой технологической среды проектирования, при этом схемы БД (SQL-модели) переносятся в репозиторий Uniface, и, наоборот, прикладные модели, сформированные средствами Uniface, могут быть перенесены в репозиторий Vantage Team Builder. Возможные рассогласования между репозиториями двух систем устраняются с помощью специальной утилиты. Разработка экранных форм в среде Uniface выполняется на базе диаграмм последовательностей форм (FSD) после импорта SQL-модели.
Структура репозитория (хранящегося непосредственно в целевой СУБД) и интерфейсы Vantage Team Builder является открытыми, что в принципе позволяет интегрировать его с любыми другими средствами.
Vantage Team Builder функционирует на всех основных UNIX-платформах (Solaris, SCO UNIX, AIX, HP-UX) и VMS.
CASE-средство Designer/2000 2.0 фирмы ORACLE является интегрированным CASE-средством, обеспечивающим в совокупности со средствами разработки приложений Developer/2000 поддержку полного ЖЦ ПО для систем, использующих СУБД ORACLE.
Designer/2000 представляет собой семейство методологий и поддерживающих их программных продуктов. Базовая методология Designer/2000 (CASE*Method) - структурная методология проектирования систем, охватывающая полностью все этапы жизненного цикла ИС.
Designer/2000 обеспечивает графический интерфейс при разработке различных моделей (диаграмм) предметной области. В процессе построения моделей информация о них заносится в репозиторий. В состав Designer/2000 входят следующие компоненты:
Repository Administrator - средства управления репозиторием (создание и удаление приложений, управление доступом к данным со стороны различных пользователей, экспорт и импорт данных);
Repository Object Navigator - средство доступа к репозиторию, обеспечивающие многооконный объектно-ориентированный интерфейс доступа ко всем элементам репозитория;
Process Modeller - средство анализа и моделирования деловой деятельности, основывающееся на концепциях реинжиниринга бизнес-процессов (BPR - Business Process Reengineering) и глобальной системы управления качеством (TQM - Total Quality Management);
Systems Modeller - набор средств построения функциональных и информационных моделей проектируемой ИС, включающий средства для построения диаграмм "сущность-связь" (Entity Relationship Diagrammer), диаграмм функциональных иерархий (Function Hierarchy Diagrammer), диаграмм потоков данных (Data Flow Diagrammer) и средство анализа и модификации связей объектов репозитория различных типов (Matrix Diagrammer);
Systems Designer - набор средств проектирования ИС, включающий средство построения структуры реляционной базы данных (Data Diagrammer), а также средства построения диаграмм, отображающих взаимодействие с данными, иерархию, структуру и логику приложений, реализуемую хранимыми процедурами на языке PL/SQL (Module Data Diagrammer, Module Structure Diagrammer и Module Logic Navigator);
Server Generator - генератор описаний объектов БД ORACLE (таблиц, индексов, ключей, последовательностей и т.д.). Помимо продуктов ORACLE, генерация и реинжиниринг БД может выполняться для СУБД Informix, DB/2, Microsoft SQL Server, Sybase, а также для стандарта ANSI SQL DDL и баз данных, доступ к которым реализуется посредством ODBC;
Forms Generator (генератор приложений для ORACLE Forms). Генерируемые приложения включают в себя различные экранные формы, средства контроля данных, проверки ограничений целостности и автоматические подсказки. Дальнейшая работа с приложением выполняется в среде Developer/2000;
Repository Reports - генератор стандартных отчетов, интегрированный с ORACLE Reports и позволяющий русифицировать отчеты, а также изменять структурное представление информации.
Генерация приложений, помимо продуктов ORACLE, выполняется также для Visual Basic.
Designer/2000 можно интегрировать с другими средствами, используя открытый интерфейс приложений API (Application Programming Interface). Кроме того, можно использовать средство ORACLE CASE Exchange для экспорта/импорта объектов репозитория с целью обмена информацией с другими CASE-средствами.
Среда функционирования Designer/2000 - Windows 3.x, Windows 95, Windows NT.
ERwin - средство концептуального моделирования БД, использующее методологию IDEF1X. ERwin реализует проектирование схемы БД, генерацию ее описания на языке целевой СУБД (ORACLE, Informix, Ingres, Sybase, DB/2, Microsoft SQL Server, Progress и др.) и реинжиниринг существующей БД. ERwin выпускается в нескольких различных конфигурациях, ориентированных на наиболее распространенные средства разработки приложений 4GL. Версия ERwin/OPEN полностью совместима со средствами разработки приложений PowerBuilder и SQLWindows и позволяет экспортировать описание спроектированной БД непосредственно в репозитории данных средств.
Для ряда средств разработки приложений (PowerBuilder, SQLWindows, Delphi, Visual Basic) выполняется генерация форм и прототипов приложений.
Сетевая версия Erwin ModelMart обеспечивает согласованное проектирование БД и приложений в рабочей группе.
BPwin - средство функционального моделирования, реализующее методологию IDEF0.
S-Designor 4.2 представляет собой CASE-средство для проектирования реляционных баз данных. По своим функциональным возможностям и стоимости он близок к CASE-средству Erwin, отличаясь внешне используемой на диаграммах нотацией. S-Designor реализует стандартную методологию моделирования данных и генерирует описание БД для таких СУБД, как ORACLE, Informix, Ingres, Sybase, DB/2, Microsoft SQL Server и др. Для существующих систем выполняется реинжиниринг БД.
S-Designor совместим с рядом средств разработки приложений (PowerBuilder, Uniface, TeamWindows и др.) и позволяет экспортировать описание БД в репозитории данных средств. Для PowerBuilder выполняется прямая генерация шаблонов приложений.
CASE.Аналитик 1.1 является практически единственным в настоящее время конкурентоспособным отечественным CASE-средством функционального моделирования и реализует построение диаграмм потоков данных в соответствии с методологией, описанной в подразделе 2.3. Его основные функции:
построение и редактирование DFD;
анализ диаграмм и проектных спецификаций на полноту и непротиворечивость;
получение разнообразных отчетов по проекту;
генерация макетов документов в соответствии с требованиями ГОСТ 19.ХХХ и 34.ХХХ.
Среда функционирования: процессор - 386 и выше, основная память - 4 Мб, дисковая память - 5 Мб, MS Windows 3.x или Windows 95.
С помощью отдельного программного продукта (Catherine) выполняется обмен данными с CASE-средством Erwin. При этом из проекта, выполненного в CASE.Аналитике, экспортируется описание структур данных и накопителей данных, которое по определенным правилам формирует описание сущностей и их атрибутов.
Rational Rose - CASE-средство фирмы Rational Software Corporation (США) - предназначено для автоматизации этапов анализа и проектирования ПО, а также для генерации кодов на различных языках и выпуска проектной документации. Rational Rose использует синтез-методологию объектно-ориентированного анализа и проектирования, основанную на подходах трех ведущих специалистов в данной области: Буча, Рамбо и Джекобсона. Разработанная ими универсальная нотация для моделирования объектов (UML - Unified Modeling Language) претендует на роль стандарта в области объектно-ориентированного анализа и проектирования. Конкретный вариант Rational Rose определяется языком, на котором генерируются коды программ (C++, Smalltalk, PowerBuilder, Ada, SQLWindows и ObjectPro). Основной вариант - Rational Rose/C++ - позволяет разрабатывать проектную документацию в виде диаграмм и спецификаций, а также генерировать программные коды на С++. Кроме того, Rational Rose содержит средства реинжиниринга программ, обеспечивающие повторное использование программных компонент в новых проектах.
В основе работы Rational Rose лежит построение различного рода диаграмм и спецификаций, определяющих логическую и физическую структуры модели, ее статические и динамические аспекты. В их число входят диаграммы классов, состояний, сценариев, модулей, процессов.
В составе Rational Rose можно выделить 6 основных структурных компонент: репозиторий, графический интерфейс пользователя, средства просмотра проекта (browser), средства контроля проекта, средства сбора статистики и генератор документов. К ним добавляются генератор кодов (индивидуальный для каждого языка) и анализатор для С++, обеспечивающий реинжиниринг - восстановление модели проекта по исходным текстам программ.
Rational Rose интегрируется со средством PVCS для организации групповой работы и управления проектом и со средством SoDA - для документирования проектов. Интеграция Rational Rose и SoDA обеспечивается средствами SoDA.
Rational Rose функционирует на различных платформах: IBM PC (в среде Windows), Sun SPARC stations (UNIX, Solaris, SunOS), Hewlett-Packard (HP UX), IBM RS/6000 (AIX).
Функциональное моделирование. Методология IDEF0.
История возникновения стандарта IDEF0
Методологию IDEF0 можно считать следующим этапом развития хорошо известного графического языка описания функциональных систем SADT (Structured Analysis and Design Teqnique). Исторически, IDEF0, как стандарт был разработан в 1981 году в рамках обширной программы автоматизации промышленных предприятий, которая носила обозначение ICAM (Integrated Computer Aided Manufacturing) и была предложена департаментом Военно-Воздушных Сил США. Собственно семейство стандартов IDEF унаследовало свое обозначение от названия этой программы (IDEF=ICAM DEFinition). В процессе практической реализации, участники программы ICAM столкнулись с необходимостью разработки новых методов анализа процессов взаимодействия в промышленных системах. При этом кроме усовершенствованного набора функций для описания бизнес-процессов, одним из требований к новому стандарту было наличие эффективной методологии взаимодействия в рамках "аналитик-специалист”. Другими словами, новый метод должен был обеспечить групповую работу над созданием модели, с непосредственным участием всех аналитиков и специалистов, занятых в рамках проекта.
В результате поиска соответствующих решений родилась методология функционального моделирования IDEF0. C 1981 года стандарт IDEF0 претерпел несколько незначительных изменения, в основном ограничивающего характера, и последняя его редакция была выпущена в декабре 1993 года Национальным Институтом По Стандарам и Технологиям США (NIST).
Основные элементы и понятия IDEF0
Графический язык IDEF0 удивительно прост и гармоничен. В основе методологии лежат четыре основных понятия:
Первым из них является понятие функционального блока(Activity Box). Функциональный блок графически изображается в виде прямоугольника (см. рис. 1) и олицетворяет собой некоторую конкретную функцию в рамках рассматриваемой системы. По требованиям стандарта название каждого функционального блока должно быть сформулировано в глагольном наклонении (например, "производить услуги”, а не "производство услуг”).
Каждая из четырех сторон функционального блока имеет своё определенное значение (роль), при этом:
Верхняя сторона имеет значение "Управление” (Control);
Левая сторона имеет значение "Вход” (Input);
Правая сторона имеет значение "Выход” (Output);
Нижняя сторона имеет значение "Механизм” (Mechanism).
Каждый функциональный блок в рамках единой рассматриваемой системы должен иметь свой уникальный идентификационный номер.
<!--[if !vml]--><!--[endif]-->Рисунок
1. Функциональный блок.
Вторым "китом” методологии IDEF0 является понятие интерфейсной дуги (Arrow). Также интерфейсные дуги часто называют потоками или стрелками. Интерфейсная дуга отображает элемент системы, который обрабатывается функциональным блоком или оказывает иное влияние на функцию, отображенную данным функциональным блоком.
Графическим отображением интерфейсной дуги является однонаправленная стрелка. Каждая интерфейсная дуга должна иметь свое уникальное наименование (Arrow Label). По требованию стандарта, наименование должно быть оборотом существительного.
С помощью интерфейсных дуг отображают различные объекты, в той или иной степени определяющие процессы, происходящие в системе. Такими объектами могут быть элементы реального мира (детали, вагоны, сотрудники и т.д.) или потоки данных и информации (документы, данные, инструкции и т.д.).
В зависимости от того, к какой из сторон подходит данная интерфейсная дуга, она носит название "входящей”, "исходящей” или "управляющей”. Кроме того, "источником” (началом) и "приемником” (концом) каждой функциональной дуги могут быть только функциональные блоки, при этом "источником” может быть только выходная сторона блока, а "приемником” любая из трех оставшихся.
Необходимо отметить, что любой функциональный блок по требованиям стандарта должен иметь по крайней мере одну управляющую интерфейсную дугу и одну исходящую. Это и понятно – каждый процесс должен происходить по каким-то правилам (отображаемым управляющей дугой) и должен выдавать некоторый результат (выходящая дуга), иначе его рассмотрение не имеет никакого смысла.
При построении IDEF0 – диаграмм важно правильно отделять входящие интерфейсные дуги от управляющих, что часто бывает непросто. К примеру, на рисунке 2 изображен функциональный блок "Обработать заготовку”.
В реальном процессе рабочему, производящему обработку, выдают заготовку и технологические указания по обработке (или правила техники безопасности при работе со станком). Ошибочно может показаться, что и заготовка и документ с технологическими указаниями являются входящими объектами, однако это не так. На самом деле в этом процессе заготовка обрабатывается по правилам отраженным в технологических указаниях, которые должны соответственно изображаться управляющей интерфейсной дугой.
<!--[if !vml]--><!--[endif]-->
Рисунок
2.
Другое дело, когда технологические указания обрабатываются главным технологом и в них вносятся изменения (рис. 3). В этом случае они отображаются уже входящей интерфейсной дугой, а управляющим объектом являются, например, новые промышленные стандарты, исходя из которых производятся данные изменения.
<!--[if !vml]--><!--[endif]-->
Рисунок
3.
Приведенные выше примеры подчеркивают внешне схожую природу входящих и управляющих интерфейсных дуг, однако для систем одного класса всегда есть определенные разграничения. Например, в случае рассмотрения предприятий и организаций существуют пять основных видов объектов: материальные потоки (детали, товары, сырье и т.д.), финансовые потоки (наличные и безналичные, инвестиции и т.д.), потоки документов (коммерческие, финансовые и организационные документы), потоки информации (информация, данные о намерениях, устные распоряжения и т.д.) и ресурсы (сотрудники, станки, машины и т.д.). При этом в различных случаях входящими и исходящими интерфейсными дугами могут отображаться все виды объектов, управляющими только относящиеся к потокам документов и информации, а дугами-механизмами только ресурсы.
Обязательное наличие управляющих интерфейсных дуг является одним из главных отличий стандарта IDEF0 от других методологий классов DFD (Data Flow Diagram) и WFD (Work Flow Diagram).
Третьим основным понятием стандарта IDEF0 является декомпозиция (Decomposition). Принцип декомпозиции применяется при разбиении сложного процесса на составляющие его функции. При этом уровень детализации процесса определяется непосредственно разработчиком модели.
Декомпозиция позволяет постепенно и структурированно представлять модель системы в виде иерархической структуры отдельных диаграмм, что делает ее менее перегруженной и легко усваиваемой.
Модель IDEF0 всегда начинается с представления системы как единого целого – одного функционального блока с интерфейсными дугами, простирающимися за пределы рассматриваемой области. Такая диаграмма с одним функциональным блоком называется контекстной диаграммой, и обозначается идентификатором "А-0”.
В пояснительном тексте к контекстной диаграмме должна быть указана цель (Purpose) построения диаграммы в виде краткого описания и зафиксирована точка зрения(Viewpoint).
Определение и формализация цели разработки IDEF0 – модели является крайне важным моментом. Фактически цель определяет соответствующие области в исследуемой системе, на которых необходимо фокусироваться в первую очередь. Например, если мы моделируем деятельность предприятия с целью построения в дальнейшем на базе этой модели информационной системы, то эта модель будет существенно отличаться от той, которую бы мы разрабатывали для того же самого предприятия, но уже с целью оптимизации логистических цепочек.
Точка зрения определяет основное направление развития модели и уровень необходимой детализации. Четкое фиксирование точки зрения позволяет разгрузить модель, отказавшись от детализации и исследования отдельных элементов, не являющихся необходимыми, исходя из выбранной точки зрения на систему. Например, функциональные модели одного и того же предприятия с точек зрения главного технолога и финансового директора будут существенно различаться по направленности их детализации. Это связано с тем, что в конечном итоге, финансового директора не интересуют аспекты обработки сырья на производственных станках, а главному технологу ни к чему прорисованные схемы финансовых потоков. Правильный выбор точки зрения существенно сокращает временные затраты на построение конечной модели.
В процессе декомпозиции, функциональный блок, который в контекстной диаграмме отображает систему как единое целое, подвергается детализации на другой диаграмме. Получившаяся диаграмма второго уровня содержит функциональные блоки, отображающие главные подфункции функционального блока контекстной диаграммы и называется дочерней (Child diagram) по отношению к нему (каждый из функциональных блоков, принадлежащих дочерней диаграмме соответственно называется дочерним блоком – Child Box). В свою очередь, функциональный блок - предок называется родительским блоком по отношению к дочерней диаграмме (Parent Box), а диаграмма, к которой он принадлежит – родительской диаграммой (Parent Diagram). Каждая из подфункций дочерней диаграммы может быть далее детализирована путем аналогичной декомпозиции соответствующего ей функционального блока. Важно отметить, что в каждом случае декомпозиции функционального блока все интерфейсные дуги, входящие в данный блок, или исходящие из него фиксируются на дочерней диаграмме. Этим достигается структурная целостность IDEF0 – модели. Наглядно принцип декомпозиции представлен на рисунке 4. Следует обратить внимание на взаимосвязь нумерации функциональных блоков и диаграмм - каждый блок имеет свой уникальный порядковый номер на диаграмме (цифра в правом нижнем углу прямоугольника), а обозначение под правым углом указывает на номер дочерней для этого блока диаграммы. Отсутствие этого обозначения говорит о том, что декомпозиции для данного блока не существует.
Часто бывают случаи, когда отдельные интерфейсные дуги не имеет смысла продолжать рассматривать в дочерних диаграммах ниже какого-то определенного уровня в иерархии, или наоборот - отдельные дуги не имеют практического смысла выше какого-то уровня. Например, интерфейсную дугу, изображающую "деталь” на входе в функциональный блок "Обработать на токарном станке” не имеет смысла отражать на диаграммах более высоких уровней – это будет только перегружать диаграммы и делать их сложными для восприятия. С другой стороны, случается необходимость избавиться от отдельных "концептуальных” интерфейсных дуг и не детализировать их глубже некоторого уровня. Для решения подобных задач в стандарте IDEF0 предусмотрено понятие туннелирования. Обозначение "туннеля” (Arrow Tunnel) в виде двух круглых скобок вокруг начала интерфейсной дуги обозначает, что эта дуга не была унаследована от функционального родительского блока и появилась (из "туннеля”) только на этой диаграмме. В свою очередь, такое же обозначение вокруг конца (стрелки) интерфейсной дуги в непосредственной близи от блока – приёмника означает тот факт, что в дочерней по отношению к этому блоку диаграмме эта дуга отображаться и рассматриваться не будет. Чаще всего бывает, что отдельные объекты и соответствующие им интерфейсные дуги не рассматриваются на некоторых промежуточных уровнях иерархии – в таком случае, они сначала "погружаются в туннель”, а затем, при необходимости "возвращаются из туннеля”.
Последним из понятий IDEF0 является глоссарий (Glossary). Для каждого из элементов IDEF0: диаграмм, функциональных блоков, интерфейсных дуг существующий стандарт подразумевает создание и поддержание набора соответствующих определений, ключевых слов, повествовательных изложений и т.д., которые характеризуют объект, отображенный данным элементом. Этот набор называется глоссарием и является описанием сущности данного элемента. Например, для управляющей интерфейсной дуги "распоряжение об оплате” глоссарий может содержать перечень полей соответствующего дуге документа, необходимый набор виз и т.д. Глоссарий гармонично дополняет наглядный графический язык, снабжая диаграммы необходимой дополнительной информацией.
<!--[if !vml]--><!--[endif]-->
Рисунок
4. Декомпозиция функциональных блоков.
Принципы ограничения сложности IDEF0-диаграмм
Обычно IDEF0-модели несут в себе сложную и концентрированную информацию, и для того, чтобы ограничить их перегруженность и сделать удобочитаемыми, в соответствующем стандарте приняты соответствующие ограничения сложности:
Ограничение количества функциональных блоков на диаграмме тремя-шестью. Верхний предел (шесть) заставляет разработчика использовать иерархии при описании сложных предметов, а нижний предел (три) гарантирует, что на соответствующей диаграмме достаточно деталей, чтобы оправдать ее создание;
Ограничение количества подходящих к одному функциональному блоку (выходящих из одного функционального блока) интерфейсных дуг четырьмя.
Разумеется, строго следовать этим ограничениям вовсе необязательно, однако, как показывает опыт, они являются весьма практичными в реальной работе.
Дисциплина групповой работы над разработкой IDEF0-модели
Стандарт IDEF0 содержит набор процедур, позволяющих разрабатывать и согласовывать модель большой группой людей, принадлежащих к разным областям деятельности моделируемой системы. Обычно процесс разработки является итеративным и состоит из следующих условных этапов:
Создание модели группой специалистов, относящихся к различным сферам деятельности предприятия. Эта группа в терминах IDEF0 называется авторами (Authors). Построение первоначальной модели является динамическим процессом, в течение которого авторы опрашивают компетентных лиц о структуре различных процессов. На основе имеющихся положений, документов и результатов опросов создается черновик (Model Draft) модели.
Распространение черновика для рассмотрения, согласований и комментариев. На этой стадии происходит обсуждение черновика модели с широким спектром компетентных лиц (в терминах IDEF0- читателей) на предприятии. При этом каждая из диаграмм черновой модели письменно критикуется и комментируется, а затем передается автору. Автор, в свою очередь, также письменно соглашается с критикой или отвергает её с изложением логики принятия решения и вновь возвращает откорректированный черновик для дальнейшего рассмотрения. Этот цикл продолжается до тех пор, пока авторы и читатели не придут к единому мнению.
Официальное утверждение модели. Утверждение согласованной модели происходит руководителем рабочей группы в том случае, если у авторов модели и читателей отсутствуют разногласия по поводу ее адекватности. Окончательная модель представляет собой согласованное представление о предприятии (системе) с заданной точки зрения и для заданной цели.
Наглядность графического языка IDEF0 делает модель вполне читаемой и для лиц, которые не принимали участия в проекте ее создания, а также эффективной для проведения показов и презентаций. В дальнейшем, на базе построенной модели могут быть организованы новые проекты, нацеленные на производство изменений на предприятии (в системе).
Особенности национальной практики применения функционального моделирования средствами IDEF0
В последние годы интерес в России к методологиям семейства IDEF неуклонно растет. При этом интерес к таким стандартам, как IDEF3-5 скорее теоретический, а к IDEF0 вполне практически обоснованный. Собственно говоря, первые Case-средства, позволяющие строить DFD и IDEF0 диаграммы появились на российком рынке еще в 1996 году, одновременно с выходом популярной книги по принципам моделирования в стандартах SADT.
Тем не менее, большинство руководителей до сих пор расценивают практическое применение моделирования в стандартах IDEF скорее как дань моде, нежели чем эффективный путь оптимизации существующей системы управления бизнесом. Вероятнее всего это связано с ярко выраженным недостатком информации по практическому применению этих методологий и с непременным софтверным уклоном абсолютного большинства публикаций.
Не секрет, что практически все проекты обследования и анализа финансовой и хозяйственной деятельности предприятий сейчас в России так или иначе связаны с построением автоматизированных систем управления. Благодаря этому, стандарты IDEF в понимании большинства стали условно неотделимы от внедрения информационных технологий, хотя с их помощью порой можно эффективно решать даже небольшие локальные задачи, буквально при помощи карандаша и бумаги.
При проведении сложных проектов обследования предприятий, разработка моделей в стандарте IDEF0 позволяет наглядно и эффективно отобразить весь механизм деятельности предприятия в нужном разрезе. Однако самое главное – это возможность коллективной работы, которую предоставляет IDEF0. В моей практической деятельности было достаточно много случаев, когда построение модели осуществлялось с прямой помощью сотрудников различных подразделений. При этом, консультант за достаточно короткое время объяснял им основные принципы IDEF0 и обучал работе с соответствующим прикладным программным обеспечением. В результате, сотрудники различных отделов создавали IDEF-диаграммы деятельности своего функционального подразделения, которые должны были ответить на следующие вопросы:
Что поступает в подразделение "на входе”?
Какие функции, и в какой последовательности выполняются в рамках подразделения?
Кто является ответственным за выполнение каждой из функций?
Чем руководствуется исполнитель при выполнении каждой из функций?
Что является результатом работы подразделения (на выходе)?
После согласования черновиков диаграмм внутри каждого конкретного подразделения, они собираются консультантом в черновую модель предприятия, в которой увязываются все входные и выходные элементы. На этом этапе фиксируются все неувязки отдельных диаграмм и их спорные места. Далее, эта модель вновь проходит через функциональные отделы для дальнейшего согласования и внесения необходимых корректив. В результате, за достаточно короткое время и при привлечении минимума человеческих ресурсов со стороны консультационной компании (а эти ресурсы, как известно, весьма недешевы), получается IDEF0-модель предприятия по принципу "Как есть”, причем, что немаловажно, она представляет предприятие с позиции сотрудников, которые в нем работают и досконально знают все нюансы, в том числе неформальные. В дальнейшем, эта модель будет передана на анализ и обработку к бизнес-аналитикам, которые будут заниматься поиском "узких мест” в управлении компанией и оптимизацией основных процессов, трансформируя модель "Как есть” в соответствующее представление "Как должно быть”. На основании этих изменений и выносится итоговое заключение, которое содержит в себе рекомендации по реорганизации сисемы управления.
Разумеется, подобный подход требует ряда организационных мер, в первую очередь со стороны руководства обследуемого предприятия. Это обусловлено тем, что эта техника подразумевает возложение на некоторых сотрудников дополнительных обязанностей по освоению и практическому применению новых методологий. Однако в конечном итоге это оправдывает себя, так как дополнительные один-два часа работы отдельных сотрудников в течение нескольких дней позволяют существенно экономить средства на оплату консультационных услуг сторонней компании (которые в любом случае будут отрывать от работы тех же работников анкетами и вопросами). Что касается самих работников предприятия, так или иначе выраженного противодействия с их стороны я в своей практике не встречал.
Вывод из всего этого можно сделать следующий: совершенно не обязательно каждый раз самим придумывать решения для стандартных задач. Всегда, когда Вы сталкиваетесь с необходимостью анализа той или иной функциональной системы (от системы проектирования космического корабля, до процесса приготовления комплексного ужина) – используйте годами проверенные и обкатанные методы. Одним из таких методов и является IDEF0, позволяющий с помошью своего простого и понятного инструментария решать сложные жизненные задачи.