
- •Введение Тенденции развития конструкций эс
- •Терминология электронных средств
- •1. Методические рекомендации по самостоятельному изучению дисциплины
- •1.2. Программа курса и методические указания
- •Раздел 1. «Введение. Основные проблемы конструирования и производства радиоэлектронных средств» (2 часа).
- •Раздел 2. «Основные этапы разработки рэс. Методы проектирования. Этапы процесса проектирования» (2 часа).
- •Раздел 3. Теплообмен в рэс (4 часа).
- •Раздел 4. «Защита рэс от механических воздействий» (2 часа).
- •Раздел 9 «Контроль и прогнозирование качества рэс. Управление качеством рэс на предприятии» (2 часа).
- •Раздел 10 «Технологические процессы в рэс.» (4 часа).
- •Раздел 11 «Технология производства микросхем». (4 часа).
- •Раздел 12 «Патентно-правовые показатели конструкции рэс» (2 часа).
- •1.2. Свойства конструкций эс
- •1.3. Структурные уровни
- •1.4. Классификация электронных средств
- •Контрольные вопросы.
- •2. Факторы, определяющие построение электронных средств
- •2.1. Факторы окружающей среды
- •2.2. Системные факторы, определяющие построение электронных средств
- •2.2.1 Факторы, определяющие компоновку рэа
- •2.3. Факторы взаимодействия в системе «человек-машина»
- •2.3.1. Человеко-машинные системы, их классификация и свойства.
- •2.3.2. Психологические характеристики и параметры человека-оператора
- •2.4 Рабочая зона оператора
- •2.4.1. Формы рабочих зон
- •2.4.2. Размещение органов управления
- •2.4.3. Размещение средств отображения
- •2.4.4. Выбор типа индикаторных приборов
- •2.4.5. Рекомендации по оформлению лицевой панели
- •3. Конструкторское проектирование
- •Характер и вид конструкторских работ и организация творческой работы
- •Характер и вид конструкторских работ
- •3.1.2 Организация творческой работы конструктора
- •Общая методология конструирования эс
- •3.2. Стадии разработки эс
- •3.3. Выбор метода конструирования эс
- •3.4. Конструкторская документация
- •4. Современные и перспективные конструкции электронных средств
- •4.1. Компоновочные схемы фя цифровой мэа III поколения
- •4.2. Компоновочные схемы блоков цифровой мэа III поколения
- •4.3. Компоновочные схемы фя цифровой мэа IV поколения
- •4.4. Компоновочные схемы блоков цифровой мэа IV поколения
- •4.5 Компоновочные схемы приёмоусилительных фя мэа III поколения
- •4.6 Компоновочные схемы приемоусилительных фя мэа IV поколения
- •4.7 Компоновочные схемы блоков приёмоусилительной мэа
- •4.8. Компоновочные схемы модулей свч и афар
- •5. Системы базовых несущих конструкций
- •5.1. Конструкционные системы и иерархическая соподчиненность уровней эс
- •5.2. Основные виды конструкционных систем
- •5.3. Выбор несущих конструкций и корпусирование
- •5.4. Проблема развития бнк для современных эс
- •6. Унификация конструкций эс
- •6.1. Государственная система стандартизации (гсс)
- •6.2. Единая система конструкторской документации (ескд)
- •6.3. Разновидности стандартизации
- •6.4. Унификация эс
- •7. Тепловые и механические характеристики эс
- •7.1 Тепловой режим блоков мэа
- •7.2 Расчет тепловых режимов мэа
- •7.3. Механические воздействия на мэа
- •7.4 Защита блоков мэа от механических воздействий
- •8. Электромагнитная совместимость эс
- •8.2 Факторы, влияющие на эмс элементов и узлов эс
- •8.3. Наиболее вероятные источники и приемники наводимых напряжений (наводок)
- •8.4. Основные виды паразитных связей
- •8.4.1. Паразитная связь через общее сопротивление
- •8.4.2. Паразитная емкостная связь
- •8.4.3. Паразитная индуктивная связь
- •8.4.4. Паразитная связь через электромагнитное поле и волноводная связь
- •8.5. Экранирование
- •8.5.1. Принципы экранирования электрического поля
- •8.5.2. Принципы экранирования магнитного поля
- •8.6 Фильтрация
- •8.7. Заземление
- •8.8. Виды линий связи и их электрические параметры
- •8.8.1. Волоконно – оптические линии связи (волс)
- •8.9 Конструирование электрического монтажа
- •8.9.1 Классификация электромонтажа эс
- •8.9.2. Требования к электрическому монтажу эс
- •8.9.3. Требования к контактным узлам (разъемным и неразъемным)
- •8.9.4. Конструирование электромонтажа объемным проводом
- •8.9.5. Преимущества печатного, шлейфового и плёночного монтажа
- •8.9.6 Разъемы в эс
- •9. Влагозащита и герметизация
- •9.1. Выбор способа защиты металлических деталей и узлов с учетом требований по электропроводности корпуса изделий
- •9.1.1. Основные свойства некоторых металлических и химических покрытий
- •9.1.2. Лакокрасочные покрытия
- •9.1.3. Выбор защитного покрытия
- •9.2. Герметизация
- •9.2.1. Защита изделий изоляционными материалами
- •9.2.2. Герметизация с помощью герметичных корпусов
- •9.3. Примеры конструкций средств защиты
- •9.4. Выбор способа защиты от взрыво- и пожароопасной среды
- •3. Глоссарий
- •4. Методические рекомендации к выполнению лабораторных работ Лабораторная работа № 1 компоновка блока рэс
- •1. Общие положения
- •2. Лабораторное задание и методические указания к его выполнению
- •3. Содержание отчета
- •4. Контрольные вопросы.
- •Разработка вспомогательных элементов рэс
- •1. Общие положения
- •2.Лабораторные задания и методические указания к его выполнению
- •2.1 Основные конструктивные требования к деталям в зависимости
- •Изогнутые детали
- •Полые детали
- •Литые детали
- •3. Содержание отчета
- •Контрольные вопросы
- •9. Какая информация должна быть предусмотрена на рабочих чертежах деталей? Заключение
- •Распределение трудоемкости по темам
- •План-график самостоятельной работы
- •Задание на лабораторные работы
- •Кварцованный металлоискатель
- •Усилитель мощности укв.
- •Радиомикрофон 88-108 мГц
- •Клоп на 1.5 в
- •Усилитель мощности на 144 мГц
- •Библиографический список
- •Оглавление
9.2.2. Герметизация с помощью герметичных корпусов
Это наиболее совершенный способ защиты узлов и устройств радиоэлектронной аппаратуры. При разработке герметичных корпусов следует учитывать условия эксплуатации и, прежде всего изменения барометрического давления, внешние механические воздействия и возможные перепады температур.
Вакуум-плотная герметизация может быть выполнена с неразъемными и разъемными швами: первую используют для защиты малогабаритных узлов и устройств, вторую – для сравнительно больших блоков, требующих профилактической проверке и нуждающихся в смене ее отдельных элементов.
Герметичные неразъемные конструкции делают со швами, выполняемыми пайкой, сваркой, и др., а швы разъемных конструкций обеспечивают специальными прокладками (свинцовыми, резиновыми и др.).
Герметичные паяные соединения могут в некоторых случаях подвергаться распайке и выполнять роль разъемных конструкций, но этим не всегда можно воспользоваться в эксплуатации, так как даже после удачной распайки восстановить их прежнее качество практически не возможно.
Качество паяных швов зависит от материала корпуса и технологий пайки. Корпуса изделий, предназначающихся для пайки, обычно изготовляют из холоднокатаной стали (0,3 – 0,5 мм), латуни (0,25-0,8 мм) и алюминия (0,3-0,8 мм). Перед пайкой швов их хорошо облуживают. Швы, паянные мягкими припоями, допускают работу при температуре до 85°С. При большей температуре, вследствие перекристаллизации припоя, в швах могут образовываться поры и герметичность нарушится. Большие перепады температур (-60- +85°С.) вызывают деформации корпуса и также могут вызвать потерю герметичности. Для температуры выше 85°С необходимо пользоваться стальными корпусами и применять твердые припои.
Герметизация с помощью паяного демонтируемого соединения применяются для блоков, объем которого составляет 0,5 – 5 дм 3. этот способ обеспечивает натекание Вн = 1,33 * 10 -7 дм3 * Па / сек, что гарантирует работоспособность блока в течение 12 лет.
Сварные швы допускают большие механические нагрузки и в ряде случаев более технологичны, чем паяные. Для контактного, роликового и рельефного способов электросварки целесообразно использовать стальные листы толщиной 0,25 -0,5 мм, для дуговой сварки толщина свариваемых стальных листов должна быть не менее 1 мм. Холодная сварка может применяться только для алюминия с толщиной не менее 0,8 мм. Основная особенность герметичных сварных швов состоит в том, что они выдерживают большие перепады температур (-60 – + 200 оС).
Герметизация сваркой применяются для блоков, не подлежащих ремонту, объем которых не превышает 0,5 дм 3. Вскрытие таких блоков возможно путем механического снятия сварного шва. Это приводит к попаданию металлической пыли на бескорпусные элементы и может вызывать их отказ. Этот способ широко используется для герметизации корпусов микросхем и МСБ и обеспечивает натекание не 1,33 * 10 -10 дм3 * Па / сек.
В герметичных разъемных конструкциях между соединениями деталями (корпусом и крышкой) помещают прокладки из металла, способного упруго деформироваться. Условием непроницаемости герметичного соединения является сохранения во все время его службы контактного давления между уплотняющей прокладкой и соприкасающимися поверхностями. Значение контактного давления должно превышать перепад давлений разделяемых сред.
Применяют металлические и резиновые прокладки, удовлетворяющие этому условию. Металлические приладки из свинца, алюминия, красной меди. При стягивании винтами прокладки деформируются, в них может возникать напряжение, превышающие предел текучести. В резиновых прокладках уплотнения достигается действием упругих остаточных деформаций. Резиновые прокладки имеют форму сечения круглую, прямоугольную и т. д. При использовании резины в качестве прокладок необходимо учитывать, что для этого материала характерно свойство релаксации, т.е. постепенного падения внутренних напряжений при неизменном значении деформации. Причина релаксации – замедленная перестройка молекулярной структуры деформированной резины. Так, через 20 мин напряжение снижается на 14 % , через 2 –е суток – на 25 % и стабилизируется. При повторном обжатии релаксация меньше, всего 6 % за 20 суток. Поэтому узел уплотнения с резиновой прокладкой следует подтянуть через 2-е суток после сборки.
Резина (непористая) практически несжимаема, при давлении 800 МН / м 2 сжатие составляет всего 3 %. Температурный коэффициент линейного расширения резины равен 500*10-6 град-1, что примерно в 40 раз больше, чем у стали, и может при нагревании замкнутого узла привести к разрушению тонкостенной конструкции или к развитию вредных для резины механических перенапряжений. Резина не должна подвергаться эксплуатационным деформациям сжатия более чем на 30%, иначе быстро теряет свои эластичные свойства.
Герметизация с помощью уплотнительных прокладок применяется для блоков, объем которых превышает 3 дм3, так как блоки меньших размеров герметизировать данным способом нецелесообразно из-за больших потерь на элементы крепления. Этот способ обеспечивает натекание Вн =1,33 * 10 -4 дм3 * Па / сек.
Обеспечение
герметичности осложняется, если из
корпуса должны выходить валы устройств
управления. Для уплотнения валика
применяется фетровые или фторопластовые
сальники. Необходимым условием работы
сальника является отсутствие биения
валика и высокая чистота поверхности
(не ниже 7). Герметизация рукояток
управления может быть выполнена с
помощь резиновых колпаков.
Кабельные выводы делают с помощью герморазъемов.
Выводы в герметичном корпусе выполняют с помощью проходных изоляторов.
Следует учитывать климатические условия при герметизации в момент монтажа или ремонта. Герметизацию следует производить при более низкой температуре, чем точка росы.
Герметизированный узел и корпус должны бать предварительно высушены, операция герметизации должна протекать в среде сухого газа. В противном случае влага будет законсервирована внутри корпуса и при колебаниях окружающей температуры образуется конденсат.