Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Матан 3 семестр. / лекция№59.doc
Скачиваний:
57
Добавлен:
31.05.2015
Размер:
559.1 Кб
Скачать

6.19. Примеры разложения функции в ряды Фурье

Приведем примеры разложения функции в ряды Фурье.

Пример 1. Разложить в ряд Фурье периодическую функцию с периодом, заданную в интервалеуравнением.

Решение. Графиком этой функции в интервале является отрезок, соединяющий точкии. Сумма ряда Фурье функцииявляется периодической функцией с периодоми совпадает с функциейна сегменте.

Определяем коэффициенты ряда Фурье. Сначала находим

.

Второй интеграл равен нулю как интеграл от нечетной функции, взятый по интервалу, симметричному относительно начала координат. Таким образом, .

Далее, находим коэффициенты . Имеем

.

Нетрудно видеть, что оба интеграла равны нулю (подынтегральная функция второго интеграла является нечетной как произведение четной функции на нечетную). Итак, , т.е..

Найдем теперь коэффициенты :

.

Первый интеграл равен нулю. Подынтегральная функция второго интеграла – четная как произведение двух нечетных функций. Таким образом,

.

Интегрируя по частям, получим ,,,, т.е.

Следовательно, разложение функции в ряд Фурье имеет вид

Это равенство имеет место во всех точках, кроме точек разрыва. В каждой точке разрыва сумма ряда равна среднему арифметическому ее пределов справа и слева, т. е. нулю.

Пример 2. Периодическая функция ƒ(x) с периодом 2π определена следующим образом:

ƒ(x) = -1 при –π < x < 0,

ƒ(x) = 1 при 0 ≤ x ≤ π.

Эта функция кусочно монотонна и ограничена на отрезке [-π, π]. Вычислим ее коэффициенты Фурье:

,

Следовательно, для рассматриваемой функции ряд Фурье имеет вид:

.

Пример 3. Периодическая функция ƒ(x) с периодом 2π определяется следующим образом: ƒ(x) = х , -π < x ≤ π.

Эта функция – кусочно монотонная и ограниченная. Следовательно, её можно разложить в ряд Фурье.

По формуле (4) находим:

Применяя формулам (17), (18) и интегрируя по частям, получим:

.

Таким образом, получаем ряд:

.

Это равенство имеет место во всех точках, кроме точек разрыва. В каждой точке разрыва сумма ряда равна среднему арифметическому ее пределов справа и слева, т. е. нулю.

Это равенство справедливо во всех точках, кроме точек разрыва.

6.20. Замечание о разложении периодической функции в ряд Фурье.

Отметим следующее свойство периодической функции ψ(x) с периодом 2π:

, каково бы ни было число λ.

Действительно, так как ψ(ξ - 2π) = ψ (ξ) , то, полагая x = ξ - π, можем написать при любых cиd:

.

В частности, принимая с = - π, d= λ, получим:

поэтому

Указанное свойство означает, что интеграл от периодической функции ψ(x) по любому отрезку, длина которого равна периоду, имеет всегда одно и тоже значение.

Из доказанного свойства вытекает, что при вычислении коэффициентов Фурье мы можем заменить промежуток интегрирования (-π, π) промежутком интегрирования (λ, λ +2π), т. е. можем положить

(20)

где λ – любое число.

Это следует из того, что функция ƒ(x) является, по условию, периодической с периодом 2π; следовательно и функция ƒ(x)·cоsnx, и ƒ(x)·sinnxявляются периодическими функциями с периодом 2π. В некоторых случаях доказанное свойство упрощает процесс нахождения коэффициентов.

Пример.

Пусть требуется разложить в ряд Фурье функцию ƒ(x) с периодом 2π, которая на отрезке 0 < x ≤ 2π задана равенством ƒ(x)= х.

Эта функция на отрезке [-π, π] задается двумя формулами:

ƒ(x) = х + 2π на отрезке [-π, 0]

ƒ(x) = х на отрезке [0, π].

В то же время на отрезке [0, 2π] гораздо проще она задается одной формулой ƒ(x) = х. Поэтому для разложения этой функции в ряд Фурье выгоднее воспользоваться формулами (20), приравняв λ=0.

Следовательно,

Соседние файлы в папке Матан 3 семестр.