- •Е.И. Воробьева
- •Введение
- •1.Системы передачи информации. Способы представления и преобразования сообщений, сигналов и помех.
- •1.1 Общие сведения о системах связи
- •1.1.1 Информация. Сообщение. Сигнал
- •1.1.2 Обобщенная структура систем связи
- •1.1.3 Дискретизация непрерывного сигнала
- •1.2 Методы модуляции в системах связи
- •1.3 .Цифровая обработка аналоговых сигналов
- •1.3.1 Преобразование аналог—цифра. Шумы квантования
- •1.3.2 Преобразование цифра-аналог и восстановление континуального сигнала
- •1.4 Кодирование информации в системах связи
- •1.4.1 Назначение и классификация кодов
- •1.4.2 Неравномерные эффективные коды
- •1.4.3 Принципы помехоустойчивого кодирования
- •1.4.4Линейные двоичные блочные коды
- •1.4.5 Циклические коды
- •1.4.6 Сверточные коды
- •2 Многоканальные системы передачи информации
- •2.1 Уплотнение информации в аналоговых системах связи.
- •2.2 Цифровые системы многоканальной передачи
- •3 Принципы построения систем электросвязи.
- •3.1 Системы телефонной связи.
- •3.1.1 Телефонный аппарат
- •3.1.2 Структура атс, сигнализация, установление соединений (коммутация)
- •3.1.3 Сигнализация
- •3.1.4 Устройства сопряжения
- •3.1.5 Цифровая телефония
- •3.2 Коротковолновые и ультракоротковолновые системы связи
- •3.3.Телевизионные системы
- •3.3.1 Преобразование видеоинформации в сигнал
- •3.3.2 Сообщение и его кодирование
- •3.3.3 Методы цифрового кодирования, используемые при формировании тв программ
- •3.3.4 Цифровая передача сигналов телевидения по линиям связи и иерархия икм систем
- •3.3.5 Цифровое кодирование полных цветовых сигналов pal, secam в аппаратно-студийном комплексе
- •3.3.6 Выбор частоты дискретизации при цифровом кодировании полных цветовых телевизионных сигналов
- •3.3.7 Эффективное цифровое кодирование тв сигнала
- •3.4 Системы подвижной радиосвязи общего пользования
- •3.4.1 Особенности и классификация систем подвижной радиосвязи (спрс)
- •I – l j – k
- •3.4.2 Транкинговые системы
- •3.4.2.1 Преимущества транковых сетей
- •3.4.2.2 Архитектура транкинговых систем
- •3.4.2.2.1 Однозоновые системы
- •3.4.2.2.2. Многозоновые системы
- •3.4.3 Сотовые системы (сспс).
- •3.4.4 Подход к проектированию сспс.
- •3.25 Древовидная сеть
- •3.4.5 Разделение сетей на иерархические уровни.
- •3.4.5.1 Физический уровень.
- •3.4.5.2 Канальный уровень.
- •3.4.5.3 Сетевой уровень.
- •3.4.6 Пути усовершенствования сспс.
- •3.4.7 Повышение надежности.
- •3.4.8 Увеличение скорости передачи.
- •3.4.9 Стандарты сспс.
- •3.5 Спутниковые системы связи
- •3.5.1 Основные параметры спутниковых линий связи
- •3.5.2. Принципы функционирования и обобщённая структурная схема систем спутниковой связи
- •3.5.3. Орбиты спутников связи, способы вывода спутников на орбиту
- •3.5.4 Способы модуляции и формирование групповых сигналов аналоговых и цифровых ссс
- •3.5.5 Способы модуляции
- •3.5.6 Многостанционный доступ (мд).
- •3.5.7 Структура кадра
- •3.5.8 Методы вхождения в синхронизм.
- •3.6 Волоконно-оптические системы связи
- •3.6.1 Оптическое волокно и особенности распространения светового потока в оптическом волокне
- •3.6.2 Методы модуляции светового потока
- •3.6.3 Лазеры и оптическое волокно
- •3.6.4 Структура восс
- •4. Сети связи и системы коммутации
- •4.1 Общие сведения о сетях связи
- •4.1.1 Модель взаимосвязи открытых систем osi / iso
- •4.1.2 Классификация сетей по области действия
- •4.1.2.1 Локальные сети
- •Характеристики лвс
- •4.1.2.2 Городские сети
- •4.1.2.3 Глобальные сети
- •4.2 Особенности современных сетевых архитектур
- •4.2.1Модель ssa компании ibm
- •4.2.2 Базовая модель dna фирмы dec.
- •4.2.3 Сети tcp/ip
- •4.3 Маршрутизазия и управление потоками в сетях связи.
- •4.3.1 Классификация алгоритмов маршрутизации.
- •4.3.2 Типы алгоритмов маршрутизации
- •4.4 Сети интегрального обслуживания
- •Библиографический список
- •394026 Воронеж, Московский просп., 14
3.4.6 Пути усовершенствования сспс.
Существует три пути усовершенствования:
Повышение пропускной способности ССПС без увеличения используемого ресурса.
Повышение надежности поддержания связи с АС.
Повышение скорости передачи.
Повышение пропускной способности ССПС.
а) Снижение D/R0.
Достигается за счет снижения допустимого отношения сигнал-шум (применение цифровых методов передачи, помехоустойчивое кодирование и модуляция).
Другой способ применение секторного обслуживания сот:
1200 600
1200
1200
Рис 3.39 Секторное обслуживания сот:
Был придуман стокгольмский план расположения сот:
D E
A B
C F C F
E D
B A
Рис. 3.40 Стокгольмский план расположения сот
В данном случае величина D/R0 получается минимально возможной (через одну ячейку), а также, за счет применения антенн с разной шириной ДН, перераспределяется пропускная способность между зонами с большей и меньшей активностью абонентов. Такой план позволяет обслуживать город с разделением на центральную деловую зону и периферийную зону спальных районов.
Достигается при использовании CDMA, т.к. размерность кластера – единица, и вся полоса частот, отводимая на систему используется в каждой соте.
б) Увеличение числа одновременно работающих абонентских станций путем динамического распределения частотно-временного ресурса: пакетный режим передачи (коммутация пакетов) и предоставление РК в паузах речи другим абонентам (длительность пауз – до 45% от общего времени занятия канала).
в) Применение методов доступа к каналу эластичных к изменению нагрузки в канале. Обеспечивается при использовании CDMA.
Для узкополосных систем: .
Для ШПС (CDMA): .
Если число работающих АС велико, то сумма Pci мало изменится при добавлении еще нескольких АС и, соответственно, мало уменьшится h2. Таким образом, мы меняем ухудшение качества связи на увеличение пропускной способности. Другой путь состоит в обмене скорости передачи на количество абонентов.
R=1/T Rmax (TF)min M абонентов при F=const.
Rmin (TF)max M+K абонентов, где К=const.
Скорость символов на выходе вокодера меняется в пределах 8…1бит/сек.
3.4.7 Повышение надежности.
а) Повышение устойчивости работы в канале с замираниями.
Для этого необходимо:
осуществлять помехоустойчивое кодирование;
перемежение символов;
в CDMA - применять сигнал, обеспечивающий разделение лучей при приеме, и методы обработки этого сигнала, позволяющие использовать сигналы лучей для улучшения качества связи.
При обработке возможно два подхода:
автовыбор наиболее мощного сигнала луча и прием информации только по этому лучу;
раздельная обработка нескольких лучей с последующим сложением результатов обработки. Этот метод обеспечивает выигрыш в несколько дБ. Обычно обрабатывают не более 3 – 4 лучей, что позволяет обеспечить выигрыш по сравнению с узкополосными системами порядка 10дБ и выше.
Для узкополосных систем TDMA-FDMA очень опасной является межсимвольная интерференция: непрерывный поток символов сообщения преобразуется в пакеты, занимающие одно окно в кадре. При этом скорость следования символов в пакете будет в Ткадра/Тпакета выше и длительность Тсимвола в пакете меньше или равна времени запаздывания между соседними лучами. Для борьбы с замираниями в этом случае используют перемежение символов и скачки по частоте. Кроме того применяют «эквалайзеры» – адаптивные фильтры, позволяющие подавить сигналы всех лучей кроме самого мощного:
1-ый
луч
t
2-ой
луч
tз t
Одно звено эквалайзера
Рис. 3.41
Для настройки эквалайзера в составе каждого пакета передается обучающая последовательность, известная на приемном конце, и настройка производится по критерию минимальной ошибки приема этой последовательности.
Кроме перечисленных методов широко используется прием на пространственно разнесенные антенны на БС.
б) Уменьшение вероятности срыва связи при эстафетной передаче.
Сбой связи при эстафетной передаче может возникнуть из-за неправильного выбора момента перехода обслуживания на другую БС.
Повышение надежности эстафетной передачи может быть достигнуто за счет дублирования передачи информации к АС через 2 БС (через предыдущую и следующую). При этом решение об окончании эстафетной передачи принимает сама АС, сравнивая сигналы, поступающие от двух БС.
Порог
на ЦКПС
начало дублирование информации конец t
эст. прд. эст. прд.
- БС1, - БС2.
Рис. 3.42
В данном случае система не боится режима «пинг-понга», а вероятность потери связи при эстафетной передаче будет меньше, поскольку сигналы, несущие информацию, складываются между собой.