
- •«Архитектура эвм»
- •Архитектура фон Неймана
- •Основные возможности шины следующие
- •Pci Express
- •Материнская плата имеет несколько основных характеристик:
- •Основные параметры материнской платы
- •Суперскалярная архитектура
- •Cisc-процессоры
- •Risc-процессоры
- •Misc-процессоры
- •Кэширование
- •Параллельная архитектура
- •Типы памяти
- •Shape cd
- •Защита от копирования
- •Техническая информация
- •Возникновение форматов dvd±r и их совместимость
- •Лазер и оптика
- •Технология твёрдого покрытия
- •Системы защиты авторских прав
- •Элт-монитор
- •Конструкция элт-мониторов:
- •Теневая маска
- •Апертурная решетка
- •Щелевая маска
- •Lcd-мониторы
- •Плазменная панель pdp (Plasma Display Panel)
- •Виды сканеров
- •Способы соединения принтера с носителем цифровой информации
- •Список использованных интернет-источников
Основные параметры материнской платы
1) Прежде всего - поколением процессора, под который она предназначена. Специальная материнская плата существует для каждого поколения процессора. Установить процессор одного поколения в материнскую плату другого чаще всего просто невозможно.
2) Диапазоном поддерживаемых процессоров в рамках одного поколения. Чем дороже и качественнее плата, тем больше процессоров она сможет поддержать.
3) Частотой системной шины. Это - величина, прямо связанная с частотой и скоростью процессора. Процессор фактически умножает рабочую частоту материнской платы - в 2, 3 и более раз (на выборе сочетания одного из коэффициентов с частотой системной шины и основан способ так называемого разгона процессоров.
4) Базовым набором микросхем - чипсетом. Для каждого типа материнской платы существует несколько основных чипсетов, различающихся по предоставляемым ими возможностям и, соответственно, ценам.
5) Фирмой-производителем.
6) Форматом материнской платы (форм-фактором), то есть способом расположения на плате основных микросхем, слотов и т.д.
7) Базовым набором слотов и разъемов. При выборе платы следите, чтобы на ней имелось достаточно всех необходимых слотов.
8) Наличием интегрированных устройств. На многих современных материнских платах вы можете встретить целый ряд "встроенных" устройств - таких, например, как видеокарта и звуковая плата.
9) Поддержкой режима SATA(последовательный интерфейс), обеспечивающего возможность работы с "быстрыми" жесткими дисками.
10) Поддержкой "зеленого" (Green) режима экономии электроэнергии.
Микропроцессоры. Структура Intel x86: УУ, АЛУ, память, интерфейс. Классификация по архитектуре системы команд: CISC и RISC. Параллельная архитектура.
Центральный процессор (ЦПУ, CPU, от англ. Central Processing Unit) — это основной рабочий компонент компьютера, который выполняет арифметические и логические операции, заданные программой, управляет вычислительным процессом и координирует работу всех устройств компьютера.
Современные процессоры выполняются в виде микропроцессоров (МП).
Физически микропроцессор представляет собой интегральную схему — тонкую пластинку кристаллического кремния прямоугольной формы площадью всего несколько квадратных миллиметров, на которой размещены схемы, реализующие все функции процессора.
Кристалл-пластинка обычно помещается в пластмассовый или керамический плоский корпус и соединяется золотыми проводками с металлическими штырьками, чтобы его можно было присоединить к системной плате компьютера.
Большинство современных процессоров для персональных компьютеров в общем основаны на той или иной версии циклического процесса последовательной обработки информации, изобретённогоДжоном фон Нейманом.
Д. фон Нейман придумал схему постройки компьютера в 1946 году.
Этапы цикла выполнения:
Процессор выставляет число, хранящееся в регистресчётчика команд, нашину адреса, и отдаётпамятикоманду чтения;
Выставленное число является для памяти адресом; память, получив адрес и команду чтения, выставляет содержимое, хранящееся по этому адресу, нашину данных, и сообщает о готовности;
П
роцессор получает число с шины данных, интерпретирует его как команду (машинную инструкцию) из своейсистемы команди исполняет её;
Если последняя команда не является командой перехода, процессор увеличивает на единицу (в предположении, что длина каждой команды равна единице) число, хранящееся в счётчике команд; в результате там образуется адрес следующей команды;
Снова выполняется п. 1.
Данный цикл выполняется неизменно, и именно он называется процессом(откуда и произошло название устройства).
Команды центрального процессора являются самым нижним уровнем управления компьютером, поэтому выполнение каждой команды неизбежно и безусловно. Не производится никакой проверки на допустимость выполняемых действий, в частности, не проверяется возможная потеря ценных данных. Чтобы компьютер выполнял только допустимые действия, команды должны быть соответствующим образом организованы в виде необходимой программы.
Скорость перехода от одного этапа цикла к другому определяетсятактовым генератором. Тактовый генератор вырабатывает импульсы, служащие ритмом для центрального процессора. Частота тактовых импульсов называетсятактовой частотой.
Основные компоненты микропроцессора
Устройство
управления (УУ) – вырабатывает управляющие
сигналы, поступающие
по кодовым шинам инструкций во все блоки
ЭВМ
Регистр команд – запоминающий регистр, хранит код команды: код выполняемой операции и адреса операндов
Дешифратор операции – логический блок, выбирающий в соответствии с поступающим из регистра команд кодом операции (КОП) один из множества имеющихся у него выходов
ПЗУ микропрограмм – хранит управляющие сигналы, необходимые для выполнения в блоках ПК операций обработки информации
Узел формирования адреса - устройство, вычисляющее полный адрес ячейки памяти (регистра) по реквизитам , поступающим из регистра команд и регистров МПП
КШД, КША и КШИ – часть внутренней интерфейсной шины микропроцессора
Арифметико-логическое
устройство (АЛУ) – предназначено для
выполнения арифметических и логических
операций преобразования информации.
Микропроцессорная память (кэш) – предназначена для кратковременного хранения информации, участвующей в вычислениях в ближайшие такты работы процессора. Имеет небольшой объём (до нескольких Мб), но очень высокое быстродействие (время доступа измеряется нс).
Интерфейсная часть микропроцессора – предназначена для связи и согласования МП с системной шиной ПК, а также для формирования полных адресов операндов и команд.
Конвейерная архитектура
Конвейерная архитектура (pipelining) была введена в центральный процессор с целью повышения быстродействия. Обычно для выполнения каждой команды требуется осуществить некоторое количество однотипных операций, например: выборка команды изОЗУ, дешифрация команды, адресация операнда в ОЗУ, выборка операнда из ОЗУ, выполнение команды, запись результата в ОЗУ. Каждую из этих операций сопоставляют одной ступени конвейера.
После освобождения k-й ступени конвейера она сразу приступает к работе над следующей командой. Если предположить, что каждая ступень конвейера тратит единицу времени на свою работу, то выполнение команды на конвейере длиной вnступеней займётnединиц времени, однако в самом оптимистичном случае результат выполнения каждой следующей команды будет получаться через каждую единицу времени.
Действительно, при отсутствии конвейера выполнение команды займёт nединиц времени (так как для выполнения команды по прежнему необходимо выполнять выборку, дешифрацию и т. д.), и для исполненияmкоманд понадобится единиц времени; при использовании конвейера (в самом оптимистичном случае) для выполненияmкоманд понадобится всего лишьn+mединиц времени.
Факторы, снижающие эффективность конвейера:
простой конвейера, когда некоторые ступени не используются (напр., адресация и выборка операнда из ОЗУне нужны, если команда работает с регистрами);
ожидание: если следующая команда использует результат предыдущей, то последняя не может начать выполняться до выполнения первой (это преодолевается при использовании внеочередного выполнения команд, out-of-order execution);
очистка конвейера при попадании в него команды перехода (эту проблему удаётся сгладить, используя предсказание переходов).
Некоторые современные процессоры имеют более 30 ступеней в конвейере, что увеличивает производительность процессора, однако приводит к большому времени простоя (например, в случае ошибки в предсказании условного перехода.)