Heijdra Foundations of Modern Macroeconomics (Oxford, 2002)
.pdf
Chapter 13: New Keynesian Economics
4111N, |
price following a shock in aggregate demand: |
. ation (c) reduced to: |
|
|
|
|
|
d n7 0 = |
|
|
|
|
( a Yi |
(Pi |
,13' |
IT) ) |
|
± Yi(P10,1),17)1 |
dP7(.) |
|||||
|
|
(d) |
|
dY |
|
0 mc7 (.)] |
|
|
dY |
|||||||||||
|
|
|
|
L |
|
|
|
|
a Pi |
|
pi=P7 |
|
|
|
||||||
|
|
(aYi(Pi |
|
|
|
|
||||||||||||||
orem. The total and partial |
|
|
±[p7(.) —MC70.1 |
|
aY |
Y) |
|
|
|
|
||||||||||
|
in the objective function |
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
:langed. |
|
|
= |
|
ani |
- |
1 |
|
( dPi()) |
±[pio MC10] |
|
|
|
|
|||||
|
.;ued by Silberberg (1987), |
|
[0 |
|
|
|
|
|
|
|
||||||||||
nart to a dispute between |
|
|
|
al; |
|
p =1, |
dY |
|
|
|
|
aYi(Pi |
Y) |
|||||||
man Dr Y. K. Wong. Viner |
|
= [P70 — MC1 0-11 (aYi(131 |
|
|
|
|
|
|
|
(13.67) |
||||||||||
|
, nship between short-run |
|
|
Y)) |
nj(*)a Y |
|
|
|
||||||||||||
|
iner, 1931). He instructed |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
:ver above any portion of |
where MC!'(.) is short-hand notation for the marginal cost of firm j evaluated in the |
||||||||||||||||||
- |
|
|
ntimum. Hence, to a first-order of magnitude, the effect on the profit of firm j of |
|||||||||||||||||
ninimum points of all ACsR |
||||||||||||||||||||
|
do so and pointed out to |
a change in aggregate demand is the same whether or not firm j changes its price |
||||||||||||||||||
, |
|
|
, ntimally following the aggregate demand shock. |
|
|
|
|
|||||||||||||
t. Unfortunately, Viner, not |
|
|
|
|
||||||||||||||||
|
)ng's point and ended up |
The envelope result can be illustrated with the aid of a diagram originally sug- |
||||||||||||||||||
|
'ryes (see his chart IV and |
gested by Akerlof and Yellen (1985a, p. 710). In Figure 13.3 firm j's price and profit |
||||||||||||||||||
|
,mist and mathematician, |
level are put on the horizontal and vertical axes respectively. Initially aggregate |
||||||||||||||||||
|
CLR is the envelope of all |
demand is Yo and the optimal price is at the top of the "profit hill" at point A. |
||||||||||||||||||
:dote has any lesson at all, |
The optimal price-profit combination is denoted by 87V |
» |
, yb, n), 117(P, Yo, W,D). |
|||||||||||||||||
|
|
|
|
|||||||||||||||||
1- |
|
Now consider what happens if aggregate demand expands, say from Yo to Yi (> Yo). |
||||||||||||||||||
|
: good mathematicians to |
|||||||||||||||||||
|
raphical means alone. |
Ceteris paribus the nominal wage rate (Win and the price index for the composite |
||||||||||||||||||
|
|
|
consumption good (P), 12 |
the level of profit rises for all values of |
i |
|
||||||||||||||
|
|
|
|
|
|
|
|
|
P and the entire |
|||||||||||
|
|
|
profit function shifts up, say from ili(Pi,P, Yo, |
|
v |
|
|
|
|
|||||||||||
- _'gate demand changes by a |
|
|
|
|
|
|
|
|
|
|
|
W4 ) to ngi,P, vq,.. The out- |
||||||||
put expansion leads to an increase in marginal costs (provided y < 1) and thus to |
||||||||||||||||||||
!lope theorem (see the Inter- |
||||||||||||||||||||
an increase in the optimal price of firm j (see (13.64)-(13.65)). Hence, the top of the |
||||||||||||||||||||
|
yield an expression for the |
|||||||||||||||||||
|
new profit hill (point B) lies north-east of the top of the old profit hill (point A). 14 |
|||||||||||||||||||
xogenous to firm j, i.e. .137 = |
||||||||||||||||||||
But this is not the end of the story. Following the shock to aggregate demand, firm |
||||||||||||||||||||
|
|
|
||||||||||||||||||
|
|
|
j experiences a boost in the demand for its product and increases its production level |
|||||||||||||||||
|
|
(13.65) |
12 We hold constant the prices charged by all other firms and conclude that this renders the price |
|||||||||||||||||
|
|
index, P, constant. In doing so, we ignore the fact that firm/'s price also features in the price index P. |
||||||||||||||||||
|
|
|
This is allowed because there are many firms and each individual firm is extremely small and its price |
|||||||||||||||||
|
|
|
thus carries a small weight in the price index. |
|
|
|
|
|
|
|
|
|||||||||
|
maximum profit function, |
13 |
Formally, (13.62) implies that ani o/aY = [Pi — MC]aYOY. A necessary condition for firm j |
|||||||||||||||||
|
|
|||||||||||||||||||
|
|
|
to have positive profits (as drawn in Figure 13.3) is that its price must cover at least marginal cost, |
|||||||||||||||||
|
|
|
i.e. P1 MCi. Furthermore, (13.59) implies that firm j's demand expands if aggregate demand increases, |
|||||||||||||||||
I |
|
|
i.e. aYi lay. Combining these results yields ani o/aY > 0. Firms like aggregate demand expansions |
|||||||||||||||||
1/y |
(13.66) |
because it raises their profits. |
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
, .P,Y)) |
" In contrast, if the marginal product of labour is constant (y = 1), point B lies directly above |
||||||||||||||||||
|
|
|
point A. This strong result follows from the pricing rule (13.64) in combination with the fact that the |
|||||||||||||||||
--rate demand we obtain the |
demand elasticity (0) and thus the gross markup (A) of firm j are both constant. The optimal price is |
|||||||||||||||||||
then proportional to the given nominal wage. As a result, for a given nominal wage there is no need |
||||||||||||||||||||
|
j whether or not it changes |
for firm j to change its price and the envelope result (13.67) holds exactly. |
|
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
387 |
|
