
- •Предисловие
- •Структура книги
- •Благодарности
- •1. Начинаем
- •1.1. Решение задачи
- •1.2. Программа на языке C++
- •1.2.1. Порядок выполнения инструкций
- •1.3. Директивы препроцессора
- •1.4. Немного о комментариях
- •1.5. Первый взгляд на ввод/вывод
- •1.5.1. Файловый ввод/вывод
- •2. Краткий обзор С++
- •2.1. Встроенный тип данных “массив”
- •2.2. Динамическое выделение памяти и указатели
- •2.3. Объектный подход
- •2.4. Объектно-ориентированный подход
- •2.5. Использование шаблонов
- •2.7. Использование пространства имен
- •2.8. Стандартный массив – это вектор
- •Часть II
- •3. Типы данных С++
- •3.1. Литералы
- •3.2. Переменные
- •3.2.1. Что такое переменная
- •3.2.2. Имя переменной
- •3.2.3. Определение объекта
- •3.3. Указатели
- •3.4. Строковые типы
- •3.4.1. Встроенный строковый тип
- •3.4.2. Класс string
- •3.5. Спецификатор const
- •3.6. Ссылочный тип
- •3.7. Тип bool
- •3.8. Перечисления
- •3.9. Тип “массив”
- •3.9.1. Многомерные массивы
- •3.9.2. Взаимосвязь массивов и указателей
- •3.10. Класс vector
- •3.11. Класс complex
- •3.12. Директива typedef
- •3.14. Класс pair
- •3.15. Типы классов
- •4. Выражения
- •4.2. Арифметические операции
- •4.3. Операции сравнения и логические операции
- •4.4. Операции присваивания
- •4.5. Операции инкремента и декремента
- •4.6. Операции с комплексными числами
- •4.7. Условное выражение
- •4.8. Оператор sizeof
- •4.9. Операторы new и delete
- •4.10. Оператор “запятая”
- •4.11. Побитовые операторы
- •4.12. Класс bitset
- •4.13. Приоритеты
- •4.14. Преобразования типов
- •4.1. Что такое выражение?
- •4.14.1. Неявное преобразование типов
- •4.14.2. Арифметические преобразования типов
- •4.14.3. Явное преобразование типов
- •4.14.4. Устаревшая форма явного преобразования
- •4.15. Пример: реализация класса Stack
- •5. Инструкции
- •5.1. Простые и составные инструкции
- •5.2. Инструкции объявления
- •5.3. Инструкция if
- •5.4. Инструкция switch
- •5.5. Инструкция цикла for
- •5.6. Инструкция while
- •5.8. Инструкция do while
- •5.8. Инструкция break
- •5.9. Инструкция continue
- •5.10. Инструкция goto
- •5.11. Пример связанного списка
- •5.11.1. Обобщенный список
- •6. Абстрактные контейнерные типы
- •6.1. Система текстового поиска
- •6.2. Вектор или список?
- •6.3. Как растет вектор?
- •6.4. Как определить последовательный контейнер?
- •6.5. Итераторы
- •6.6. Операции с последовательными контейнерами
- •6.6.1. Удаление
- •6.6.2. Присваивание и обмен
- •6.6.3. Обобщенные алгоритмы
- •6.7. Читаем текстовый файл
- •6.8. Выделяем слова в строке
- •6.9. Обрабатываем знаки препинания
- •6.10. Приводим слова к стандартной форме
- •6.11. Дополнительные операции со строками
- •6.12. Строим отображение позиций слов
- •6.12.2. Поиск и извлечение элемента отображения
- •6.12.3. Навигация по элементам отображения
- •6.12.4. Словарь
- •6.12.5. Удаление элементов map
- •6.13. Построение набора стоп-слов
- •6.13.2. Поиск элемента
- •6.13.3. Навигация по множеству
- •6.14. Окончательная программа
- •6.15. Контейнеры multimap и multiset
- •6.16. Стек
- •6.17. Очередь и очередь с приоритетами
- •6.18. Вернемся в классу iStack
- •Часть III
- •7. Функции
- •7.1. Введение
- •7.2. Прототип функции
- •7.2.1. Тип возвращаемого функцией значения
- •7.2.2. Список параметров функции
- •7.2.3. Проверка типов формальных параметров
- •7.3. Передача аргументов
- •7.3.1. Параметры-ссылки
- •7.3.2. Параметры-ссылки и параметры-указатели
- •7.3.3. Параметры-массивы
- •7.3.5. Значения параметров по умолчанию
- •7.3.6. Многоточие
- •7.4. Возврат значения
- •7.5. Рекурсия
- •7.6. Встроенные функции
- •7.7. Директива связывания extern "C" A
- •7.8.1. Класс для обработки параметров командной строки
- •7.9. Указатели на функции
- •7.9.1. Тип указателя на функцию
- •7.9.2. Инициализация и присваивание
- •7.9.3. Вызов
- •7.9.4. Массивы указателей на функции
- •7.9.5. Параметры и тип возврата
- •7.9.6. Указатели на функции, объявленные как extern "C"
- •8. Область видимости и время жизни
- •8.1. Область видимости
- •8.1.1. Локальная область видимости
- •8.2. Глобальные объекты и функции
- •8.2.1. Объявления и определения
- •8.2.2. Сопоставление объявлений в разных файлах
- •8.2.3. Несколько слов о заголовочных файлах
- •8.3. Локальные объекты
- •8.3.1. Автоматические объекты
- •8.3.2. Регистровые автоматические объекты
- •8.3.3. Статические локальные объекты
- •8.4. Динамически размещаемые объекты
- •8.4.2. Шаблон auto_ptr А
- •8.4.3. Динамическое создание и уничтожение массивов
- •8.4.5. Оператор размещения new А
- •8.5. Определения пространства имен А
- •8.5.1. Определения пространства имен
- •8.5.2. Оператор разрешения области видимости
- •8.5.3. Вложенные пространства имен
- •8.5.4. Определение члена пространства имен
- •8.5.5. ПОО и члены пространства имен
- •8.5.6. Безымянные пространства имен
- •8.6. Использование членов пространства имен А
- •8.6.1. Псевдонимы пространства имен
- •8.6.2. Using-объявления
- •8.6.3. Using-директивы
- •8.6.4. Стандартное пространство имен std
- •9. Перегруженные функции
- •9.1. Объявления перегруженных функций
- •9.1.1. Зачем нужно перегружать имя функции
- •9.1.2. Как перегрузить имя функции
- •9.1.3. Когда не надо перегружать имя функции
- •9.1.4. Перегрузка и область видимости A
- •9.1.5. Директива extern "C" и перегруженные функции A
- •9.1.6. Указатели на перегруженные функции A
- •9.1.7. Безопасное связывание A
- •9.2. Три шага разрешения перегрузки
- •9.3. Преобразования типов аргументов A
- •9.3.1. Подробнее о точном соответствии
- •9.3.3. Подробнее о стандартном преобразовании
- •9.3.4. Ссылки
- •9.4. Детали разрешения перегрузки функций
- •9.4.1. Функции-кандидаты
- •9.4.2. Устоявшие функции
- •9.4.3. Наилучшая из устоявших функция
- •9.4.4. Аргументы со значениями по умолчанию
- •10. Шаблоны функций
- •10.1. Определение шаблона функции
- •10.2. Конкретизация шаблона функции
- •10.3. Вывод аргументов шаблона А
- •10.4. Явное задание аргументов шаблона A
- •10.5. Модели компиляции шаблонов А
- •10.5.1. Модель компиляции с включением
- •10.5.2. Модель компиляции с разделением
- •10.5.3. Явные объявления конкретизации
- •10.6. Явная специализация шаблона А
- •10.7. Перегрузка шаблонов функций А
- •10.8. Разрешение перегрузки при конкретизации A
- •10.9. Разрешение имен в определениях шаблонов А
- •10.10. Пространства имен и шаблоны функций А
- •10.11. Пример шаблона функции
- •11. Обработка исключений
- •11.1. Возбуждение исключения
- •11.2. try-блок
- •11.3. Перехват исключений
- •11.3.1. Объекты-исключения
- •11.3.2. Раскрутка стека
- •11.3.3. Повторное возбуждение исключения
- •11.3.4. Перехват всех исключений
- •11.4. Спецификации исключений
- •11.4.1. Спецификации исключений и указатели на функции
- •11.5. Исключения и вопросы проектирования
- •12. Обобщенные алгоритмы
- •12.1. Краткий обзор
- •12.2. Использование обобщенных алгоритмов
- •12.3. Объекты-функции
- •12.3.1. Предопределенные объекты-функции
- •12.3.2. Арифметические объекты-функции
- •12.3.3. Сравнительные объекты-функции
- •12.3.4. Логические объекты-функции
- •12.3.5. Адаптеры функций для объектов-функций
- •12.3.6. Реализация объекта-функции
- •12.4. Еще раз об итераторах
- •12.4.1. Итераторы вставки
- •12.4.2. Обратные итераторы
- •12.4.3. Потоковые итераторы
- •12.4.4. Итератор istream_iterator
- •12.4.5. Итератор ostream_iterator
- •12.4.6. Пять категорий итераторов
- •12.5. Обобщенные алгоритмы
- •12.5.1. Алгоритмы поиска
- •12.5.2. Алгоритмы сортировки и упорядочения
- •12.5.3. Алгоритмы удаления и подстановки
- •12.5.4. Алгоритмы перестановки
- •12.5.5. Численные алгоритмы
- •12.5.6. Алгоритмы генерирования и модификации
- •12.5.7. Алгоритмы сравнения
- •12.5.8. Алгоритмы работы с множествами
- •12.5.9. Алгоритмы работы с хипом
- •12.6.1. Операция list_merge()
- •12.6.2. Операция list::remove()
- •12.6.3. Операция list::remove_if()
- •12.6.4. Операция list::reverse()
- •12.6.5. Операция list::sort()
- •12.6.6. Операция list::splice()
- •12.6.7. Операция list::unique()
- •Часть IV
- •13. Классы
- •13.1. Определение класса
- •13.1.1. Данные-члены
- •13.1.2. Функции-члены
- •13.1.3. Доступ к членам
- •13.1.4. Друзья
- •13.1.5. Объявление и определение класса
- •13.2. Объекты классов
- •13.3. Функции-члены класса
- •13.3.1. Когда использовать встроенные функции-члены
- •13.3.2. Доступ к членам класса
- •13.3.3. Закрытые и открытые функции-члены
- •13.3.4. Специальные функции-члены
- •13.3.5. Функции-члены со спецификаторами const и volatile
- •13.3.6. Объявление mutable
- •13.4. Неявный указатель this
- •13.4.1. Когда использовать указатель this
- •13.5. Статические члены класса
- •13.5.1. Статические функции-члены
- •13.6. Указатель на член класса
- •13.6.1. Тип члена класса
- •13.6.2. Работа с указателями на члены класса
- •13.6.3. Указатели на статические члены класса
- •13.7. Объединение – класс, экономящий память
- •13.8. Битовое поле – член, экономящий память
- •13.9. Область видимости класса A
- •13.9.1. Разрешение имен в области видимости класса
- •13.10. Вложенные классы A
- •13.11. Классы как члены пространства имен A
- •13.12. Локальные классы A
- •14.1. Инициализация класса
- •14.2. Конструктор класса
- •14.2.1. Конструктор по умолчанию
- •14.2.2. Ограничение прав на создание объекта
- •14.2.3. Копирующий конструктор
- •14.3. Деструктор класса
- •14.3.1. Явный вызов деструктора
- •14.3.2. Опасность увеличения размера программы
- •14.4. Массивы и векторы объектов
- •14.4.1. Инициализация массива, распределенного из хипа A
- •14.4.2. Вектор объектов
- •14.5. Список инициализации членов
- •14.6. Почленная инициализация A
- •14.6.1. Инициализация члена, являющегося объектом класса
- •14.7. Почленное присваивание A
- •14.8. Соображения эффективности A
- •15.1. Перегрузка операторов
- •15.1.1. Члены и не члены класса
- •15.1.2. Имена перегруженных операторов
- •15.1.3. Разработка перегруженных операторов
- •15.2. Друзья
- •15.3. Оператор =
- •15.4. Оператор взятия индекса
- •15.5. Оператор вызова функции
- •15.6. Оператор “стрелка”
- •15.7. Операторы инкремента и декремента
- •15.8. Операторы new и delete
- •15.8.1. Операторы new[ ] и delete [ ]
- •15.8.2. Оператор размещения new() и оператор delete()
- •15.9. Определенные пользователем преобразования
- •15.9.1. Конвертеры
- •15.9.2. Конструктор как конвертер
- •15.10. Выбор преобразования A
- •15.10.1. Еще раз о разрешении перегрузки функций
- •15.10.2. Функции-кандидаты
- •15.11. Разрешение перегрузки и функции-члены A
- •15.11.1. Объявления перегруженных функций-членов
- •15.11.2. Функции-кандидаты
- •15.11.3. Устоявшие функции
- •15.12. Разрешение перегрузки и операторы A
- •15.12.1. Операторные функции-кандидаты
- •15.12.2. Устоявшие функции
- •15.12.3. Неоднозначность
- •16. Шаблоны классов
- •16.1. Определение шаблона класса
- •16.1.1. Определения шаблонов классов Queue и QueueItem
- •16.2. Конкретизация шаблона класса
- •16.2.1. Аргументы шаблона для параметров-констант
- •16.3. Функции-члены шаблонов классов
- •16.3.1. Функции-члены шаблонов Queue и QueueItem
- •16.4. Объявления друзей в шаблонах классов
- •16.4.1. Объявления друзей в шаблонах Queue и QueueItem
- •16.5. Статические члены шаблонов класса
- •16.6. Вложенные типы шаблонов классов
- •16.7. Шаблоны-члены
- •16.8. Шаблоны классов и модель компиляции A
- •16.8.1. Модель компиляции с включением
- •16.8.2. Модель компиляции с разделением
- •16.8.3. Явные объявления конкретизации
- •16.9. Специализации шаблонов классов A
- •16.10. Частичные специализации шаблонов классов A
- •16.11. Разрешение имен в шаблонах классов A
- •16.12. Пространства имен и шаблоны классов
- •16.13. Шаблон класса Array
- •Часть V
- •17. Наследование и подтипизация классов
- •17.1. Определение иерархии классов
- •17.1.1. Объектно-ориентированное проектирование
- •17.2. Идентификация членов иерархии
- •17.2.1. Определение базового класса
- •17.2.2. Определение производных классов
- •17.2.3. Резюме
- •17.3. Доступ к членам базового класса
- •17.4. Конструирование базового и производного классов
- •17.4.1. Конструктор базового класса
- •17.4.2. Конструктор производного класса
- •17.4.3. Альтернативная иерархия классов
- •17.4.4. Отложенное обнаружение ошибок
- •17.4.5. Деструкторы
- •17.5.1. Виртуальный ввод/вывод
- •17.5.2. Чисто виртуальные функции
- •17.5.3. Статический вызов виртуальной функции
- •17.5.4. Виртуальные функции и аргументы по умолчанию
- •17.5.5. Виртуальные деструкторы
- •17.5.6. Виртуальная функция eval()
- •17.5.7. Почти виртуальный оператор new
- •17.5.8. Виртуальные функции, конструкторы и деструкторы
- •17.6. Почленная инициализация и присваивание A
- •17.7. Управляющий класс UserQuery
- •17.7.1. Определение класса UserQuery
- •17.8. Соберем все вместе
- •18.1. Готовим сцену
- •18.2. Множественное наследование
- •18.3. Открытое, закрытое и защищенное наследование
- •18.3.1. Наследование и композиция
- •18.3.2. Открытие отдельных членов
- •18.3.3. Защищенное наследование
- •18.3.4. Композиция объектов
- •18.4. Область видимости класса и наследование
- •18.5. Виртуальное наследование A
- •18.5.1. Объявление виртуального базового класса
- •18.5.2. Специальная семантика инициализации
- •18.5.3. Порядок вызова конструкторов и деструкторов
- •18.5.4. Видимость членов виртуального базового класса
- •18.6.2. Порождение класса отсортированного массива
- •18.6.3. Класс массива с множественным наследованием
- •19. Применение наследования в C++
- •19.1. Идентификация типов во время выполнения
- •19.1.1. Оператор dynamic_cast
- •19.1.2. Оператор typeid
- •19.1.3. Класс type_info
- •19.2. Исключения и наследование
- •19.2.1. Исключения, определенные как иерархии классов
- •19.2.2. Возбуждение исключения типа класса
- •19.2.3. Обработка исключения типа класса
- •19.2.4. Объекты-исключения и виртуальные функции
- •19.2.5. Раскрутка стека и вызов деструкторов
- •19.2.6. Спецификации исключений
- •19.2.7. Конструкторы и функциональные try-блоки
- •19.3. Разрешение перегрузки и наследование A
- •19.3.1. Функции-кандидаты
- •19.3.3. Наилучшая из устоявших функций
- •20. Библиотека iostream
- •20.1. Оператор вывода <<
- •20.2. Ввод
- •20.2.1. Строковый ввод
- •20.3. Дополнительные операторы ввода/вывода
- •20.4. Перегрузка оператора вывода
- •20.5. Перегрузка оператора ввода
- •20.6. Файловый ввод/вывод
- •20.7. Состояния потока
- •20.8. Строковые потоки
- •20.9. Состояние формата
- •20.10. Сильно типизированная библиотека
- •accumulate()
- •adjacent_difference()
- •adjacent_find()
- •binary_search()
- •copy()
- •copy_backward()
- •count_if()
- •equal()
- •equal_range()
- •fill()
- •find()
- •find_if()
- •find_end()
- •find_first_of()
- •generate()
- •generate_n()
- •includes()
- •inplace_merge()
- •iter_swap()
- •lexicographical_compare()
- •max_element()
- •merge()
- •next_permutation()
- •nth_element()
- •partial_sort()
- •partial_sort_copy()
- •partition()
- •prev_permutation()
- •random_shuffle()
- •remove()
- •remove_if()
- •remove_copy_if()
- •replace_copy()
- •replace_if()
- •replace_copy_if()
- •reverse_copy()
- •rotate()
- •search_n()
- •set_difference()
- •set_intersection()
- •set_union()
- •sort()
- •stable_partition()
- •swap()
- •swap_ranges()
- •transform()
- •unique_copy()
- •upper_bound()
- •Алгоритмы для работы с хипом
- •make_heap()
- •pop_heap()
- •push_heap()
- •sort_heap()

С++ для начинающих |
30 |
2. Краткий обзор С++
Эту главу мы начнем с рассмотрения встроенного в язык С++ типа данных “массив”. Массив – это набор данных одного типа, например массив целых чисел или массив строк. Мы рассмотрим недостатки, присущие встроенному массиву, и напишем для его представления свой класс Array, где попытаемся избавиться от этих недостатков. Затем мы построим целую иерархию подклассов, основываясь на нашем базовом классе Array.
В конце концов мы сравним наш класс Array с классом vector из стандартной библиотеки С++, реализующим аналогичную функциональность. В процессе создания этих классов мы коснемся таких свойств С++, как шаблоны, пространства имен и обработка ошибок.
2.1. Встроенный тип данных “массив”
Как было показано в главе 1, С++ предоставляет встроенную поддержку для основных
//объявление целого объекта ival
//ival инициализируется значением 1024 int ival = 1024;
//объявление вещественного объекта двойной точности dval
//dval инициализируется значением 3.14159
double dval = 3.14159;
//объявление вещественного объекта одинарной точности fval
//fval инициализируется значением 3.14159
типов данных – целых и вещественных чисел, логических значений и символов: float fval = 3.14159;
К числовым типам данных могут применяться встроенные арифметические и логические
int ival2 = ival1 + 4096; // сложение
операции: объекты числового типа можно складывать, вычитать, умножать, делить и т.д.
int ival3 = ival2 - ival; |
// вычитание |
|
dval = fval * ival; |
// умножение |
|
ival = ival3 / 2; |
// деление |
|
bool result = ival2 == ival3; |
// сравнение на равенство |
|
result = ival2 + ival != ival3; |
// сравнение на неравенство |
|
result = fval + ival2 < dval; |
// сравнение на меньше |
|
result = ival > ival2; |
|
// сравнение на больше |
В дополнение к встроенным типам стандартная библиотека С++ предоставляет поддержку для расширенного набора типов, таких, как строка и комплексное число. (Мы отложим рассмотрение класса vector из стандартной библиотеки до раздела 2.7.)

С++ для начинающих |
31 |
Промежуточное положение между встроенными типами данных и типами данных из стандартной библиотеки занимают составные типы – массивы и указатели. (Указатели рассмотрены в разделе 2.2.)
Массив – это упорядоченный набор элементов одного типа. Например,
последовательность
0 1 1 2 3 5 8 13 21
представляет собой первые 9 элементов последовательности Фибоначчи. (Выбрав начальные два числа, вычисляем каждый из следующих элементов как сумму двух предыдущих.)
Для того чтобы объявить массив и проинициализировать его данными элементами, мы должны написать следующую инструкцию С++:
int fibon[9] = { 0, 1, 1, 2, 3, 5, 8, 13, 21 };
Здесь fibon – это имя массива. Элементы массива имеют тип int, размер (длина) массива равна 9. Значение первого элемента – 0, последнего – 21. Для работы с массивом мы индексируем (нумеруем) его элементы, а доступ к ним осуществляется с помощью операции взятия индекса. Казалось бы, для обращения к первому элементу массива естественно написать:
int first_elem = fibon[1];
Однако это не совсем правильно: в С++ (как и в С) индексация массивов начинается с 0, поэтому элемент с индексом 1 на самом деле является вторым элементом массива, а индекс первого равен 0.Таким образом, чтобы обратиться к последнему элементу
fibon[0]; // первый элемент fibon[1]; // второй элемент
...
fibon[8]; // последний элемент
массива, мы должны вычесть единицу из размера массива: fibon[9]; // ... ошибка
Девять элементов массива fibon имеют индексы от 0 до 8. Употребление вместо этого индексов 1-9 является одной из самых распространенных ошибок начинающих программистов на С++.
Для перебора элементов массива обычно употребляют инструкцию цикла. Вот пример программы, которая инициализирует массив из десяти элементов числами от 0 до 9 и
int main()
затем печатает их в обратном порядке:
{
int ia[10]; int index;
С++ для начинающих |
32 |
|
|
for (index=0; index<10; ++index) |
|
|
|
|
|
// ia[0] = 0, ia[1] = 1 и т.д. |
|
|
ia[index] = index; |
|
|
for (index=9; index>=0; --index) |
|
|
cout << ia[index] << " "; |
|
|
cout << endl; |
|
|
} |
|
|
|
|
Оба цикла выполняются по 10 раз. Все управление циклом for осуществляется |
|
|
инструкциями в круглых скобках за ключевым словом for. Первая присваивает |
|
|
начальное значение переменной index. Это производится один раз перед началом цикла: |
|
|
|
index = 0; |
|
|
|
|
Вторая инструкция: |
|
|
|
index < 10; |
|
|
|
|
|
|
|
представляет собой условие окончания цикла. Оно проверяется в самом начале каждой |
|
|
итерации цикла. Если результатом этой инструкции является true, то выполнение цикла |
|
|
продолжается; если же результатом является false, цикл заканчивается. В нашем |
|
|
примере цикл продолжается до тех пор, пока значение переменной index меньше 10. На |
|
|
каждой итерации цикла выполняется некоторая инструкция или группа инструкций, |
|
|
составляющих тело цикла. В нашем случае это инструкция |
|
|
|
ia[index] = index; |
|
|
|
|
|
|
|
Третья управляющая инструкция цикла |
|
|
|
++index |
|
|
|
|
|
|
|
выполняется в конце каждой итерации, по завершении тела цикла. В нашем примере это |
|
|
увеличение переменной index на единицу. Мы могли бы записать то же действие как |
|
|
|
index = index + 1 |
|
|
|
|
но С++ дает возможность использовать более короткую (и более наглядную) форму |
|
|
записи. Этой инструкцией завершается итерация цикла. Описанные действия |
|
|
повторяются до тех пор, пока условие цикла не станет ложным. |
|
|
Вторая инструкция for в нашем примере печатает элементы массива. Она отличается от |
|
|
первой только тем, что в ней переменная index уменьшается от 9 до 0. (Подробнее |
|
|
инструкция for рассматривается в главе 5.) |
|
|
Несмотря на то, что в С++ встроена поддержка для типа данных “массив”, она весьма |
|
|
ограничена. Фактически мы имеем лишь возможность доступа к отдельным элементам |
|
|
массива. С++ не поддерживает абстракцию массива, не существует операций над |
|
|
массивами в целом, таких, например, как присвоение одного массива другому или |
|
|
сравнение двух массивов на равенство, и даже такой простой, на первый взгляд, |
|
|
операции, как получение размера массива. Мы не можем скопировать один массив в |
|
|
другой, используя простой оператор присваивания: |
|

С++ для начинающих |
33 |
||
|
int array0[10]; array1[10]; |
|
|
|
|
||
|
... |
|
|
|
array0 = array1; // ошибка |
|
|
|
Вместо этого мы должны программировать такую операцию с помощью цикла: |
|
|
|
for (int index=0; index<10; ++index) |
|
|
|
array0[index] = array1[index]; |
|
|
|
|
||
|
|
|
|
Массив “не знает” собственный размер. Поэтому мы должны сами следить за тем, чтобы |
|
||
случайно не обратиться к несуществующему элементу массива. Это становится особенно |
|
||
утомительным в таких ситуациях, как передача массива функции в качестве параметра. |
|
||
Можно сказать, что этот встроенный тип достался языку С++ в наследство от С и |
|
||
процедурно-ориентированной парадигмы программирования. В оставшейся части главы |
|
||
мы исследуем разные возможности “улучшить” массив. |
|
||
Упражнение 2.1 |
|
||
Как вы думаете, почему для встроенных массивов не поддерживается операция |
|
||
присваивания? Какая информация нужна для того, чтобы поддержать эту операцию? |
|
||
Упражнение 2.2 |
|
||
|
|
|
|
Какие операции должен поддерживать “полноценный” массив? |
|
2.2. Динамическое выделение памяти и указатели
Прежде чем углубиться в объектно-ориентированную разработку, нам придется сделать небольшое отступление о работе с памятью в программе на С++. Мы не сможем написать сколько-нибудь сложную программу, не умея выделять память во время выполнения и обращаться к ней.
В С++ объекты могут быть размещены либо статически – во время компиляции, либо динамически – во время выполнения программы, путем вызова функций из стандартной библиотеки. Основная разница в использовании этих методов – в их эффективности и гибкости. Статическое размещение более эффективно, так как выделение памяти происходит до выполнения программы, однако оно гораздо менее гибко, потому что мы должны заранее знать тип и размер размещаемого объекта. К примеру, совсем не просто разместить содержимое некоторого текстового файла в статическом массиве строк: нам нужно заранее знать его размер. Задачи, в которых нужно хранить и обрабатывать заранее неизвестное число элементов, обычно требуют динамического выделения памяти.
До сих пор во всех наших примерах использовалось статическое выделение памяти. Скажем, определение переменной ival
int ival = 1024;
заставляет компилятор выделить в памяти область, достаточную для хранения переменной типа int, связать с этой областью имя ival и поместить туда значение 1024. Все это делается на этапе компиляции, до выполнения программы.
С объектом ival ассоциируются две величины: собственно значение переменной, 1024 в данном случае, и адрес той области памяти, где хранится это значение. Мы можем обращаться к любой из этих двух величин. Когда мы пишем:
int ival2 = ival + 1;

С++ для начинающих |
34 |
то обращаемся к значению, содержащемуся в переменной ival: прибавляем к нему 1 и инициализируем переменную ival2 этим новым значением, 1025. Каким же образом обратиться к адресу, по которому размещена переменная?
С++ имеет встроенный тип “указатель”, который используется для хранения адресов объектов. Чтобы объявить указатель, содержащий адрес переменной ival, мы должны написать:
int *pint; // указатель на объект типа int
Существует также специальная операция взятия адреса, обозначаемая символом &. Ее результатом является адрес объекта. Следующий оператор присваивает указателю pint
int *pint;
адрес переменной ival:
pint = &ival; // pint получает значение адреса ival
Мы можем обратиться к тому объекту, адрес которого содержит pint (ival в нашем случае), используя операцию разыменования, называемую также косвенной адресацией. Эта операция обозначается символом *. Вот как можно косвенно прибавить единицу к ival, используя ее адрес:
*pint = *pint + 1; // неявно увеличивает ival
Это выражение производит в точности те же действия, что и
ival = ival + 1; // явно увеличивает ival
В этом примере нет никакого реального смысла: использование указателя для косвенной манипуляции переменной ival менее эффективно и менее наглядно. Мы привели этот пример только для того, чтобы дать самое начальное представление об указателях. В
реальности указатели используют чаще всего для манипуляций с динамически размещенными объектами.
Основные отличия между статическим и динамическим выделением памяти таковы:
∙статические объекты обозначаются именованными переменными, и действия над этими объектами производятся напрямую, с использованием их имен. Динамические объекты не имеют собственных имен, и действия над ними производятся косвенно, с помощью указателей;
∙выделение и освобождение памяти под статические объекты производится компилятором автоматически. Программисту не нужно самому заботиться об этом.
Выделение и освобождение памяти под динамические объекты целиком и полностью возлагается на программиста. Это достаточно сложная задача, при решении которой легко наделать ошибок. Для манипуляции динамически выделяемой памятью служат операторы new и delete.
Оператор new имеет две формы. Первая форма выделяет память под единичный объект определенного типа:
int *pint = new int(1024);

С++ для начинающих |
35 |
Здесь оператор new выделяет память под безымянный объект типа int, инициализирует его значением 1024 и возвращает адрес созданного объекта. Этот адрес используется для инициализации указателя pint. Все действия над таким безымянным объектом производятся путем разыменовывания данного указателя, т.к. явно манипулировать динамическим объектом невозможно.
Вторая форма оператора new выделяет память под массив заданного размера, состоящий из элементов определенного типа:
int *pia = new int[4];
В этом примере память выделяется под массив из четырех элементов типа int. К сожалению, данная форма оператора new не позволяет инициализировать элементы массива.
Некоторую путаницу вносит то, что обе формы оператора new возвращают одинаковый указатель, в нашем примере это указатель на целое. И pint, и pia объявлены совершенно одинаково, однако pint указывает на единственный объект типа int, а pia – на первый элемент массива из четырех объектов типа int.
Когда динамический объект больше не нужен, мы должны явным образом освободить отведенную под него память. Это делается с помощью оператора delete, имеющего, как
//освобождение единичного объекта delete pint;
//освобождение массива
иnew, две формы – для единичного объекта и для массива: delete[] pia;
Что случится, если мы забудем освободить выделенную память? Память будет расходоваться впустую, она окажется неиспользуемой, однако возвратить ее системе нельзя, поскольку у нас нет указателя на нее. Такое явление получило специальное название утечка памяти. В конце концов программа аварийно завершится из-за нехватки памяти (если, конечно, она будет работать достаточно долго). Небольшая утечка трудно поддается обнаружению, но существуют утилиты, помогающие это сделать.
Наш сжатый обзор динамического выделения памяти и использования указателей, наверное, больше породил вопросов, чем дал ответов. В разделе 8.4 затронутые проблемы будут освещены во всех подробностях. Однако мы не могли обойтись без этого отступления, так как класс Array, который мы собираемся спроектировать в последующих разделах, основан на использовании динамически выделяемой памяти.
Упражнение 2.3
(a)int ival = 1024;
(b)int *pi = &ival;
(c)int *pi2 = new int(1024);
Объясните разницу между четырьмя объектами:
(d) int *pi3 = new int[1024];
Упражнение 2.4