
- •Предисловие
- •Структура книги
- •Благодарности
- •1. Начинаем
- •1.1. Решение задачи
- •1.2. Программа на языке C++
- •1.2.1. Порядок выполнения инструкций
- •1.3. Директивы препроцессора
- •1.4. Немного о комментариях
- •1.5. Первый взгляд на ввод/вывод
- •1.5.1. Файловый ввод/вывод
- •2. Краткий обзор С++
- •2.1. Встроенный тип данных “массив”
- •2.2. Динамическое выделение памяти и указатели
- •2.3. Объектный подход
- •2.4. Объектно-ориентированный подход
- •2.5. Использование шаблонов
- •2.7. Использование пространства имен
- •2.8. Стандартный массив – это вектор
- •Часть II
- •3. Типы данных С++
- •3.1. Литералы
- •3.2. Переменные
- •3.2.1. Что такое переменная
- •3.2.2. Имя переменной
- •3.2.3. Определение объекта
- •3.3. Указатели
- •3.4. Строковые типы
- •3.4.1. Встроенный строковый тип
- •3.4.2. Класс string
- •3.5. Спецификатор const
- •3.6. Ссылочный тип
- •3.7. Тип bool
- •3.8. Перечисления
- •3.9. Тип “массив”
- •3.9.1. Многомерные массивы
- •3.9.2. Взаимосвязь массивов и указателей
- •3.10. Класс vector
- •3.11. Класс complex
- •3.12. Директива typedef
- •3.14. Класс pair
- •3.15. Типы классов
- •4. Выражения
- •4.2. Арифметические операции
- •4.3. Операции сравнения и логические операции
- •4.4. Операции присваивания
- •4.5. Операции инкремента и декремента
- •4.6. Операции с комплексными числами
- •4.7. Условное выражение
- •4.8. Оператор sizeof
- •4.9. Операторы new и delete
- •4.10. Оператор “запятая”
- •4.11. Побитовые операторы
- •4.12. Класс bitset
- •4.13. Приоритеты
- •4.14. Преобразования типов
- •4.1. Что такое выражение?
- •4.14.1. Неявное преобразование типов
- •4.14.2. Арифметические преобразования типов
- •4.14.3. Явное преобразование типов
- •4.14.4. Устаревшая форма явного преобразования
- •4.15. Пример: реализация класса Stack
- •5. Инструкции
- •5.1. Простые и составные инструкции
- •5.2. Инструкции объявления
- •5.3. Инструкция if
- •5.4. Инструкция switch
- •5.5. Инструкция цикла for
- •5.6. Инструкция while
- •5.8. Инструкция do while
- •5.8. Инструкция break
- •5.9. Инструкция continue
- •5.10. Инструкция goto
- •5.11. Пример связанного списка
- •5.11.1. Обобщенный список
- •6. Абстрактные контейнерные типы
- •6.1. Система текстового поиска
- •6.2. Вектор или список?
- •6.3. Как растет вектор?
- •6.4. Как определить последовательный контейнер?
- •6.5. Итераторы
- •6.6. Операции с последовательными контейнерами
- •6.6.1. Удаление
- •6.6.2. Присваивание и обмен
- •6.6.3. Обобщенные алгоритмы
- •6.7. Читаем текстовый файл
- •6.8. Выделяем слова в строке
- •6.9. Обрабатываем знаки препинания
- •6.10. Приводим слова к стандартной форме
- •6.11. Дополнительные операции со строками
- •6.12. Строим отображение позиций слов
- •6.12.2. Поиск и извлечение элемента отображения
- •6.12.3. Навигация по элементам отображения
- •6.12.4. Словарь
- •6.12.5. Удаление элементов map
- •6.13. Построение набора стоп-слов
- •6.13.2. Поиск элемента
- •6.13.3. Навигация по множеству
- •6.14. Окончательная программа
- •6.15. Контейнеры multimap и multiset
- •6.16. Стек
- •6.17. Очередь и очередь с приоритетами
- •6.18. Вернемся в классу iStack
- •Часть III
- •7. Функции
- •7.1. Введение
- •7.2. Прототип функции
- •7.2.1. Тип возвращаемого функцией значения
- •7.2.2. Список параметров функции
- •7.2.3. Проверка типов формальных параметров
- •7.3. Передача аргументов
- •7.3.1. Параметры-ссылки
- •7.3.2. Параметры-ссылки и параметры-указатели
- •7.3.3. Параметры-массивы
- •7.3.5. Значения параметров по умолчанию
- •7.3.6. Многоточие
- •7.4. Возврат значения
- •7.5. Рекурсия
- •7.6. Встроенные функции
- •7.7. Директива связывания extern "C" A
- •7.8.1. Класс для обработки параметров командной строки
- •7.9. Указатели на функции
- •7.9.1. Тип указателя на функцию
- •7.9.2. Инициализация и присваивание
- •7.9.3. Вызов
- •7.9.4. Массивы указателей на функции
- •7.9.5. Параметры и тип возврата
- •7.9.6. Указатели на функции, объявленные как extern "C"
- •8. Область видимости и время жизни
- •8.1. Область видимости
- •8.1.1. Локальная область видимости
- •8.2. Глобальные объекты и функции
- •8.2.1. Объявления и определения
- •8.2.2. Сопоставление объявлений в разных файлах
- •8.2.3. Несколько слов о заголовочных файлах
- •8.3. Локальные объекты
- •8.3.1. Автоматические объекты
- •8.3.2. Регистровые автоматические объекты
- •8.3.3. Статические локальные объекты
- •8.4. Динамически размещаемые объекты
- •8.4.2. Шаблон auto_ptr А
- •8.4.3. Динамическое создание и уничтожение массивов
- •8.4.5. Оператор размещения new А
- •8.5. Определения пространства имен А
- •8.5.1. Определения пространства имен
- •8.5.2. Оператор разрешения области видимости
- •8.5.3. Вложенные пространства имен
- •8.5.4. Определение члена пространства имен
- •8.5.5. ПОО и члены пространства имен
- •8.5.6. Безымянные пространства имен
- •8.6. Использование членов пространства имен А
- •8.6.1. Псевдонимы пространства имен
- •8.6.2. Using-объявления
- •8.6.3. Using-директивы
- •8.6.4. Стандартное пространство имен std
- •9. Перегруженные функции
- •9.1. Объявления перегруженных функций
- •9.1.1. Зачем нужно перегружать имя функции
- •9.1.2. Как перегрузить имя функции
- •9.1.3. Когда не надо перегружать имя функции
- •9.1.4. Перегрузка и область видимости A
- •9.1.5. Директива extern "C" и перегруженные функции A
- •9.1.6. Указатели на перегруженные функции A
- •9.1.7. Безопасное связывание A
- •9.2. Три шага разрешения перегрузки
- •9.3. Преобразования типов аргументов A
- •9.3.1. Подробнее о точном соответствии
- •9.3.3. Подробнее о стандартном преобразовании
- •9.3.4. Ссылки
- •9.4. Детали разрешения перегрузки функций
- •9.4.1. Функции-кандидаты
- •9.4.2. Устоявшие функции
- •9.4.3. Наилучшая из устоявших функция
- •9.4.4. Аргументы со значениями по умолчанию
- •10. Шаблоны функций
- •10.1. Определение шаблона функции
- •10.2. Конкретизация шаблона функции
- •10.3. Вывод аргументов шаблона А
- •10.4. Явное задание аргументов шаблона A
- •10.5. Модели компиляции шаблонов А
- •10.5.1. Модель компиляции с включением
- •10.5.2. Модель компиляции с разделением
- •10.5.3. Явные объявления конкретизации
- •10.6. Явная специализация шаблона А
- •10.7. Перегрузка шаблонов функций А
- •10.8. Разрешение перегрузки при конкретизации A
- •10.9. Разрешение имен в определениях шаблонов А
- •10.10. Пространства имен и шаблоны функций А
- •10.11. Пример шаблона функции
- •11. Обработка исключений
- •11.1. Возбуждение исключения
- •11.2. try-блок
- •11.3. Перехват исключений
- •11.3.1. Объекты-исключения
- •11.3.2. Раскрутка стека
- •11.3.3. Повторное возбуждение исключения
- •11.3.4. Перехват всех исключений
- •11.4. Спецификации исключений
- •11.4.1. Спецификации исключений и указатели на функции
- •11.5. Исключения и вопросы проектирования
- •12. Обобщенные алгоритмы
- •12.1. Краткий обзор
- •12.2. Использование обобщенных алгоритмов
- •12.3. Объекты-функции
- •12.3.1. Предопределенные объекты-функции
- •12.3.2. Арифметические объекты-функции
- •12.3.3. Сравнительные объекты-функции
- •12.3.4. Логические объекты-функции
- •12.3.5. Адаптеры функций для объектов-функций
- •12.3.6. Реализация объекта-функции
- •12.4. Еще раз об итераторах
- •12.4.1. Итераторы вставки
- •12.4.2. Обратные итераторы
- •12.4.3. Потоковые итераторы
- •12.4.4. Итератор istream_iterator
- •12.4.5. Итератор ostream_iterator
- •12.4.6. Пять категорий итераторов
- •12.5. Обобщенные алгоритмы
- •12.5.1. Алгоритмы поиска
- •12.5.2. Алгоритмы сортировки и упорядочения
- •12.5.3. Алгоритмы удаления и подстановки
- •12.5.4. Алгоритмы перестановки
- •12.5.5. Численные алгоритмы
- •12.5.6. Алгоритмы генерирования и модификации
- •12.5.7. Алгоритмы сравнения
- •12.5.8. Алгоритмы работы с множествами
- •12.5.9. Алгоритмы работы с хипом
- •12.6.1. Операция list_merge()
- •12.6.2. Операция list::remove()
- •12.6.3. Операция list::remove_if()
- •12.6.4. Операция list::reverse()
- •12.6.5. Операция list::sort()
- •12.6.6. Операция list::splice()
- •12.6.7. Операция list::unique()
- •Часть IV
- •13. Классы
- •13.1. Определение класса
- •13.1.1. Данные-члены
- •13.1.2. Функции-члены
- •13.1.3. Доступ к членам
- •13.1.4. Друзья
- •13.1.5. Объявление и определение класса
- •13.2. Объекты классов
- •13.3. Функции-члены класса
- •13.3.1. Когда использовать встроенные функции-члены
- •13.3.2. Доступ к членам класса
- •13.3.3. Закрытые и открытые функции-члены
- •13.3.4. Специальные функции-члены
- •13.3.5. Функции-члены со спецификаторами const и volatile
- •13.3.6. Объявление mutable
- •13.4. Неявный указатель this
- •13.4.1. Когда использовать указатель this
- •13.5. Статические члены класса
- •13.5.1. Статические функции-члены
- •13.6. Указатель на член класса
- •13.6.1. Тип члена класса
- •13.6.2. Работа с указателями на члены класса
- •13.6.3. Указатели на статические члены класса
- •13.7. Объединение – класс, экономящий память
- •13.8. Битовое поле – член, экономящий память
- •13.9. Область видимости класса A
- •13.9.1. Разрешение имен в области видимости класса
- •13.10. Вложенные классы A
- •13.11. Классы как члены пространства имен A
- •13.12. Локальные классы A
- •14.1. Инициализация класса
- •14.2. Конструктор класса
- •14.2.1. Конструктор по умолчанию
- •14.2.2. Ограничение прав на создание объекта
- •14.2.3. Копирующий конструктор
- •14.3. Деструктор класса
- •14.3.1. Явный вызов деструктора
- •14.3.2. Опасность увеличения размера программы
- •14.4. Массивы и векторы объектов
- •14.4.1. Инициализация массива, распределенного из хипа A
- •14.4.2. Вектор объектов
- •14.5. Список инициализации членов
- •14.6. Почленная инициализация A
- •14.6.1. Инициализация члена, являющегося объектом класса
- •14.7. Почленное присваивание A
- •14.8. Соображения эффективности A
- •15.1. Перегрузка операторов
- •15.1.1. Члены и не члены класса
- •15.1.2. Имена перегруженных операторов
- •15.1.3. Разработка перегруженных операторов
- •15.2. Друзья
- •15.3. Оператор =
- •15.4. Оператор взятия индекса
- •15.5. Оператор вызова функции
- •15.6. Оператор “стрелка”
- •15.7. Операторы инкремента и декремента
- •15.8. Операторы new и delete
- •15.8.1. Операторы new[ ] и delete [ ]
- •15.8.2. Оператор размещения new() и оператор delete()
- •15.9. Определенные пользователем преобразования
- •15.9.1. Конвертеры
- •15.9.2. Конструктор как конвертер
- •15.10. Выбор преобразования A
- •15.10.1. Еще раз о разрешении перегрузки функций
- •15.10.2. Функции-кандидаты
- •15.11. Разрешение перегрузки и функции-члены A
- •15.11.1. Объявления перегруженных функций-членов
- •15.11.2. Функции-кандидаты
- •15.11.3. Устоявшие функции
- •15.12. Разрешение перегрузки и операторы A
- •15.12.1. Операторные функции-кандидаты
- •15.12.2. Устоявшие функции
- •15.12.3. Неоднозначность
- •16. Шаблоны классов
- •16.1. Определение шаблона класса
- •16.1.1. Определения шаблонов классов Queue и QueueItem
- •16.2. Конкретизация шаблона класса
- •16.2.1. Аргументы шаблона для параметров-констант
- •16.3. Функции-члены шаблонов классов
- •16.3.1. Функции-члены шаблонов Queue и QueueItem
- •16.4. Объявления друзей в шаблонах классов
- •16.4.1. Объявления друзей в шаблонах Queue и QueueItem
- •16.5. Статические члены шаблонов класса
- •16.6. Вложенные типы шаблонов классов
- •16.7. Шаблоны-члены
- •16.8. Шаблоны классов и модель компиляции A
- •16.8.1. Модель компиляции с включением
- •16.8.2. Модель компиляции с разделением
- •16.8.3. Явные объявления конкретизации
- •16.9. Специализации шаблонов классов A
- •16.10. Частичные специализации шаблонов классов A
- •16.11. Разрешение имен в шаблонах классов A
- •16.12. Пространства имен и шаблоны классов
- •16.13. Шаблон класса Array
- •Часть V
- •17. Наследование и подтипизация классов
- •17.1. Определение иерархии классов
- •17.1.1. Объектно-ориентированное проектирование
- •17.2. Идентификация членов иерархии
- •17.2.1. Определение базового класса
- •17.2.2. Определение производных классов
- •17.2.3. Резюме
- •17.3. Доступ к членам базового класса
- •17.4. Конструирование базового и производного классов
- •17.4.1. Конструктор базового класса
- •17.4.2. Конструктор производного класса
- •17.4.3. Альтернативная иерархия классов
- •17.4.4. Отложенное обнаружение ошибок
- •17.4.5. Деструкторы
- •17.5.1. Виртуальный ввод/вывод
- •17.5.2. Чисто виртуальные функции
- •17.5.3. Статический вызов виртуальной функции
- •17.5.4. Виртуальные функции и аргументы по умолчанию
- •17.5.5. Виртуальные деструкторы
- •17.5.6. Виртуальная функция eval()
- •17.5.7. Почти виртуальный оператор new
- •17.5.8. Виртуальные функции, конструкторы и деструкторы
- •17.6. Почленная инициализация и присваивание A
- •17.7. Управляющий класс UserQuery
- •17.7.1. Определение класса UserQuery
- •17.8. Соберем все вместе
- •18.1. Готовим сцену
- •18.2. Множественное наследование
- •18.3. Открытое, закрытое и защищенное наследование
- •18.3.1. Наследование и композиция
- •18.3.2. Открытие отдельных членов
- •18.3.3. Защищенное наследование
- •18.3.4. Композиция объектов
- •18.4. Область видимости класса и наследование
- •18.5. Виртуальное наследование A
- •18.5.1. Объявление виртуального базового класса
- •18.5.2. Специальная семантика инициализации
- •18.5.3. Порядок вызова конструкторов и деструкторов
- •18.5.4. Видимость членов виртуального базового класса
- •18.6.2. Порождение класса отсортированного массива
- •18.6.3. Класс массива с множественным наследованием
- •19. Применение наследования в C++
- •19.1. Идентификация типов во время выполнения
- •19.1.1. Оператор dynamic_cast
- •19.1.2. Оператор typeid
- •19.1.3. Класс type_info
- •19.2. Исключения и наследование
- •19.2.1. Исключения, определенные как иерархии классов
- •19.2.2. Возбуждение исключения типа класса
- •19.2.3. Обработка исключения типа класса
- •19.2.4. Объекты-исключения и виртуальные функции
- •19.2.5. Раскрутка стека и вызов деструкторов
- •19.2.6. Спецификации исключений
- •19.2.7. Конструкторы и функциональные try-блоки
- •19.3. Разрешение перегрузки и наследование A
- •19.3.1. Функции-кандидаты
- •19.3.3. Наилучшая из устоявших функций
- •20. Библиотека iostream
- •20.1. Оператор вывода <<
- •20.2. Ввод
- •20.2.1. Строковый ввод
- •20.3. Дополнительные операторы ввода/вывода
- •20.4. Перегрузка оператора вывода
- •20.5. Перегрузка оператора ввода
- •20.6. Файловый ввод/вывод
- •20.7. Состояния потока
- •20.8. Строковые потоки
- •20.9. Состояние формата
- •20.10. Сильно типизированная библиотека
- •accumulate()
- •adjacent_difference()
- •adjacent_find()
- •binary_search()
- •copy()
- •copy_backward()
- •count_if()
- •equal()
- •equal_range()
- •fill()
- •find()
- •find_if()
- •find_end()
- •find_first_of()
- •generate()
- •generate_n()
- •includes()
- •inplace_merge()
- •iter_swap()
- •lexicographical_compare()
- •max_element()
- •merge()
- •next_permutation()
- •nth_element()
- •partial_sort()
- •partial_sort_copy()
- •partition()
- •prev_permutation()
- •random_shuffle()
- •remove()
- •remove_if()
- •remove_copy_if()
- •replace_copy()
- •replace_if()
- •replace_copy_if()
- •reverse_copy()
- •rotate()
- •search_n()
- •set_difference()
- •set_intersection()
- •set_union()
- •sort()
- •stable_partition()
- •swap()
- •swap_ranges()
- •transform()
- •unique_copy()
- •upper_bound()
- •Алгоритмы для работы с хипом
- •make_heap()
- •pop_heap()
- •push_heap()
- •sort_heap()

С++ для начинающих |
393 |
Шаблон класса auto_ptr обеспечивает значительные удобства и безопасность использования динамически выделяемой памяти. Однако все равно надо не терять бдительности, чтобы не навлечь на себя неприятности:
∙нельзя инициализировать объект auto_ptr указателем, полученным не с помощью оператора new, или присвоить ему такое значение. В противном случае
после применения к этому объекту оператора delete поведение программы непредсказуемо;
∙два объекта auto_ptr не должны получать во владение один и тот же объект. Очевидный способ допустить такую ошибку – присвоить одно значение двум
auto_ptr< string >
pstr_auto( new string( "Brontosaurus" ) );
//ошибка: теперь оба указывают на один объект
//и оба являются его владельцами
объектам. Менее очевидный – с помощью операции get(). Вот пример: auto_ptr< string > pstr_auto2( pstr_auto.get() );
Операция release() гарантирует, что несколько указателей не являются владельцами одного и того же объекта. release() не только возвращает адрес объекта, на который ссылается auto_ptr, но и передает владение им.
//правильно: оба указывают на один объект,
//но pstr_auto больше не является его владельцем auto_ptr< string >
Предыдущий фрагмент кода нужно переписать так: pstr_auto2( pstr_auto.release() );
8.4.3. Динамическое создание и уничтожение массивов
Оператор new может выделить из хипа память для размещения массива. В этом случае после спецификатора типа в квадратных скобках указывается размер массива. Он может быть задан сколь угодно сложным выражением. new возвращает указатель на первый
//создание единственного объекта типа int
//с начальным значением 1024
int *pi = new int( 1024 );
//создание массива из 1024 элементов
//элементы не инициализируются
int *pia = new int[ 1024 ];
// создание двумерного массива из 4x1024 элементов
элемент массива. Например:
int (*pia2)[ 1024 ] = new int[ 4 ][ 1024 ];
pi содержит адрес единственного элемента типа int, инициализированного значением 1024; pia – адрес первого элемента массива из 1024 элементов; pia2 – адрес начала

С++ для начинающих |
394 |
массива, содержащего четыре массива по 1024 элемента, т.е. pia2 адресует 4096 элементов.
В общем случае массив, размещаемый в хипе, не может быть инициализирован. (В разделе 15.8 мы покажем, как с помощью конструктора по умолчанию присвоить начальное значение динамическому массиву объектов типа класса.) Задавать инициализатор при выделении оператором new памяти под массив не разрешается. Массиву элементов встроенного типа, размещенному в хипе, начальные значения
for (int index = 0; index < 1024; ++index )
присваиваются с помощью цикла for: pia[ index ] = 0;
Основное преимущество динамического массива состоит в том, что количество элементов в его первом измерении не обязано быть константой, т.е. может не быть известным во время компиляции. Для массивов, определяемых в локальной или глобальной области видимости, это не так: здесь размер задавать необходимо.
Например, если указатель в ходе выполнения программы ссылается на разные C-строки,
то область памяти под текущую строку обычно выделяется динамически и ее размер определяется в зависимости от длины строки. Как правило, это более эффективно, чем создавать массив фиксированного размера, способный вместить самую длинную строку: ведь все остальные строки могут быть значительно короче. Более того, программа может аварийно завершиться, если длина хотя бы одной из строк превысит отведенный лимит.
Оператор new допустимо использовать для задания первого измерения массива с помощью значения, вычисляемого во время выполнения. Предположим, у нас есть
const char *noerr = "success"; // ...
const char *err189 = "Error: a function declaration must "
следующие C-строки:
"specify a function return type!";
Размер создаваемого с помощью оператора new массива может быть задан значением,
#include <cstring>
const char *errorTxt;
if (errorFound) errorTxt = errl89;
else
errorTxt = noerr;
int dimension = strlen( errorTxt ) + 1; char *strl = new char[ dimension ];
// копируем текст ошибки в strl
вычисляемым во время выполнения: strcpy( strl, errorTxt );

С++ для начинающих |
395 |
//обычная для С++ идиома,
//иногда удивляющая начинающих программистов
dimension разрешается заменить выражением:
char *strl = new char[ str1en( errorTxt ) + 1 ];
Единица, прибавляемая к значению, которое возвращает strlen(), необходима для учета завершающего нулевого символа в C-строке. Отсутствие этой единицы – весьма распространенная ошибка, которую достаточно трудно обнаружить, поскольку она проявляет себя косвенно: происходит затирание какой-либо другой области программы. Почему? Большинство функций, которые обрабатывают массивы, представляющие собой С-строки символов, пробегают по элементам, пока не встретят завершающий нуль.
Если в конце строки нуля нет, то возможно чтение или запись в случайную область памяти. Избежать подобных проблем позволяет класс string из стандартной библиотеки С++.
Отметим, что только первое измерение массива, создаваемого с помощью оператора new, может быть задано значением, вычисляемым во время выполнения. Остальные измерения
int getDim();
// создание двумерного массива
int (*pia3)[ 1024 ] = new int[ getDim() ][ 1024 ]; // правильно
// ошибка: второе измерение задано не константой
должны задаваться константами, известными во время компиляции. Например: int **pia4 = new int[ 4 ][ getDim() ];
Оператор delete для уничтожения массива имеет следующую форму:
delete[] str1;
Пустые квадратные скобки необходимы. Они говорят компилятору, что указатель адресует массив, а не единичный элемент. Поскольку тип str1 – указатель на char, без этих скобок компилятор не поймет, что удалять следует целый массив.
Отсутствие скобок не является синтаксической ошибкой, но правильность выполнения программы не гарантируется (это особенно справедливо для массивов, которые содержат объекты классов, имеющих деструкторы, как это будет показано в разделе 14.4).
Чтобы избежать проблем, связанных с управлением динамически выделяемой памятью для массивов, рекомендуется пользоваться контейнерными типами из стандартной библиотеки, такими, как vector, list или string. Они управляют памятью автоматически. (Тип string был представлен в разделе 3.4, тип vector – в разделе 3.10. Подробное описание контейнерных типов см. в главе 6.)

С++ для начинающих |
396 |
8.4.4. Динамическое создание и уничтожение константных объектов
Программист способен создать объект в хипе и запретить изменение его значения после инициализации. Этого можно достичь, объявляя объект константным. Для этого применяется следующая форма оператора new:
const int *pci = new const int(1024);
Константный динамический объект имеет несколько особенностей. Во-первых, он должен быть инициализирован, иначе компилятор сигнализирует об ошибке (кроме случая, когда объект принадлежит к типу класса, имеющего конструктор по умолчанию; в такой ситуации инициализатор можно опустить).
Во-вторых, указатель, возвращаемый выражением new, должен адресовать константу. В предыдущем примере pci служит указателем на const int.
Константность динамически созданного объекта подразумевает, что значение, полученное при инициализации, в дальнейшем не может быть изменено. Но поскольку объект динамический, временем его жизни управляет оператор delete. Например:
delete pci;
Хотя операнд оператора delete имеет тип указателя на const int, эта инструкция является корректной и освобождает область памяти, на которую ссылается pci.
Невозможно создать динамический массив константных элементов встроенного типа потому, что, как мы отмечали выше, элементы такого массива нельзя проинициализировать в операторе new. Следующая инструкция приводит к ошибке компиляции:
const int *pci = new const int[100]; // ошибка
8.4.5. Оператор размещения new А
Существует третья форма оператора new, которая создает объект без отведения для него памяти, то есть в памяти, которая уже была выделена. Эту форму называют оператором размещения new. Программист указывает адрес области памяти, в которой размещается объект:
new (place_address) type-specifier
place_address должен быть указателем. Такая форма (она включается заголовочным файлом <new>) позволяет программисту предварительно выделить большую область памяти, которая впоследствии будет содержать различные объекты. Например:

С++ для начинающих |
397 |
#include <iostream> #include <new>
const int chunk = 16; class Foo {
public:
int val() { return _val; } FooQ(){ _val = 0; }
private:
int _val;
};
// выделяем память, но не создаем объектов Foo char *buf = new char[ sizeof(Foo) * chunk ];
int main() {
//создаем объект Foo в buf Foo *pb = new (buf) Foo;
//проверим, что объект помещен в buf if ( pb.val() == 0 )
cout << "Оператор new сработал!" << endl;
// здесь нельзя использовать pb delete[] buf;
return 0;
}
Результат работы программы:
Оператор new сработал!
Для оператора размещения new нет парного оператора delete: он не нужен, поскольку эта форма не выделяет память. В предыдущем примере необходимо освободить память, адресуемую указателем buf, а не pb. Это происходит в конце программы, когда буфер больше не нужен. Поскольку buf ссылается на символьный массив, оператор delete
имеет форму
delete[] buf;
При уничтожении buf прекращают существование все объекты, созданные в нем. В нашем примере pb больше не ссылается на существующий объект класса Foo.
Упражнение 8.5
(a)const float *pf = new const float[100];
(b)double *pd = new doub1e[10] [getDim()];
(c)int (*pia2)[ 1024 ] = new int[ ][ 1024 ];
Объясните, почему приведенные операторы new ошибочны:
(d) const int *pci = new const int;
Упражнение 8.6
Как бы вы уничтожили pa?

С++ для начинающих |
398 |
typedef int arr[10];
int *pa = new arr;
Упражнение 8.7
Какие из следующих операторов delete содержат потенциальные ошибки времени
int globalObj; char buf[1000];
void f() {
int *pi = &global0bj; double *pd = 0;
float *pf = new float(O); int *pa = new(buf)int[20];
delete pi; |
// (a) |
delete pd; |
// (b) |
delete pf; |
// (c) |
de1ete[] pa; // (d)
выполнения и почему:
}
Упражнение 8.8
Какие из данных объявлений auto_ptr неверны или грозят ошибками времени
int ix = 1024; int *pi = & ix;
int *pi2 = new int ( 2048 );
(a)auto_ptr<int> p0(ix);
(b)auto_ptr<int> pl(pi);
(c)auto_ptr<int> p2(pi2);
(d)auto_ptr<int> p3(&ix);
(e)auto_ptr<int> p4(new int(2048));
(f)auto_ptr<int> p5(p2.get());
(9) auto_ptr<int> p6(p2.release());
выполнения? Объясните каждый случай.
(h) auto_ptr<int> p7(p2);
Упражнение 8.9
int *pi0 = p2.get();
Объясните разницу между следующими инструкциями: int *pi1 = p2.release() ;
Для каких случаев более приемлем тот или иной вызов? Упражнение 8.10