
- •Лекционный блок
- •Глава 1. Кинематика
- •1.1. Основные понятия
- •1.2. Скорость и ускорение
- •1.3. Равномерное и равнопеременное движение
- •1.4. Кинематика движения по окружности
- •Взаимосвязь угловых и линейных характеристик при движении по окружности
- •1.6. Нормальное, тангенциальное и полное ускорения
- •1.7. Кинематика произвольного криволинейного движения
- •1.8. Кинематика колебательного движения
- •1.8.1. Сложение колебаний одного направления
- •1.8.2. Биения
- •1.8.3. Сложение взаимно перпендикулярных колебаний
- •1.9. Кинематика волнового движения
- •1.9.1. Уравнение плоской волны
- •1.9.2. Общие характеристики волны
- •1.9.3. Распространение, отражение и преломление волн
- •1.9.4. Продольные и поперечные волны
- •1.9.5. Интерференция волн
- •1.9.6. Стоячие волны
- •1.9.7. Эффект Доплера
- •Глава 2. Динамика
- •2.1. Первый закон Ньютона. Инерциальные системы отсчета. Принцип относительности
- •2.1.1. Классический закон сложения скоростей
- •2.2. Второй закон Ньютона
- •2.3. Силы в механике
- •2.3.1. Сила всемирного тяготения
- •2.3.2. Сила тяжести
- •2.3.3. Механическая связь. Реакция связи
- •2.3.4. Сила трения.
- •2.3.6. Сила упругости. Закон Гука
- •2.4. Третий закон Ньютона
- •Материальной точки (тела)
- •2.5.1. Импульс материальной точки
- •2.5.2. Импульс механической системы
- •Динамика движения материальной точки по окружности
- •2.7. Динамика вращательного движения относительно неподвижной оси
- •2.7.1. Момент инерции твердого тела
- •Задачи к главе 2 для самостоятельного решения
- •Глава 3. Статика
- •Глава 4. Работа силы. Мощность
- •4.1. Консервативные и неконсервативные силы в механике
- •4.1.1. Работа силы тяжести
- •4.1.2. Работа силы всемирного тяготения
- •4.1.3. Работа силы упругости
- •Глава 5. Энергия
- •5.1. Потенциальная энергия
- •5.2. Потенциальная энергия и сила поля
- •5.3. Кинетическая энергия поступательного движения
- •5.4. Кинетическая энергия вращательного движения
- •5.5. Полная механическая энергия тела (системы)
- •Глава 6. Законы сохранения
- •6.1. Закон сохранения импульса
- •6.2. Закон сохранения момента импульса
- •6.3. Закон сохранения механической энергии
- •6.3.1. Механическая энергия материальной точки
- •6.3.2. Механическая энергия материальной точки (тела) под воздействием произвольных сил
- •6.3.3. Механическая энергия системы
- •6.3.4. Упругое столкновение
- •Глава 7. Динамика малых колебаний
- •7.1. Пружинный маятник
- •7.2. Физический маятник
- •7.3. Математический маятник
- •7.4. Затухающие колебания
- •Влияние величины сопротивления на характер колебательного движения
- •7.6. Вынужденные колебания
- •7.7. Резонанс
- •Глава 8. Движение в неинерциальной системе отсчета
- •Кинематика движения в неинерциальной системе отсчета
- •8.2. Динамика движения в неинерциальной системе отсчета
- •Глава 9. Элементы гидро- и аэродинамики
- •9.1. Основные понятия
- •9.2. Уравнение Бернулли
- •9.3. Формула Торричелли
- •9.4. Горизонтальный поток жидкости
- •9.5. Подъемная сила
- •9.6. Течение вязкой жидкости
- •9.6.1. Установившаяся скорость
- •9.7. Гидростатика
- •9.7.1. Закон Паскаля. Сообщающиеся сосуды
- •9.7.2. Закон Архимеда.
- •Глава 10. Релятивистская механика
- •10.1. Кинематика специальной теории относительности
- •10.1.1. Интервал
- •10.1.2. Преобразования Лоренца
- •10.1.3. Относительность одновременности
- •10.1.4. Относительность длины
- •10.1.5. Относительность длительности событий
- •10.1.6. Релятивистское преобразование скоростей
- •10.1.7. Релятивистское преобразование ускорений
- •10.1.8. Релятивистский эффект Доплера
- •10.2. Динамика специальной теории относительности
- •10.2.1. Релятивистский импульс
- •10.2.2. Основное уравнение динамики сто
- •10.2.3. Релятивистское выражение для энергии
- •10.2.4. Взаимосвязь массы и энергии
- •10.2.5. Связь между энергией и импульсом тела
- •Соотношения (10.46) и (10.52) показывают, что энергия тела и его импульс зависят от системы отсчета, принятой в данном конкретном случае. Покажем, что величина
- •Примеры решения задач
- •Примеры решения задач по кинематике криволинейного движения
- •Примерная схема решения задач по кинематике колебаний
- •Задачи к главе I для самостоятельного решения
- •Задачи к главе 2 для самостоятельного решения
- •Задачи к главе 3 для самостоятельного решения
- •Задачи к главе 6 для самостоятельного решения
- •Задачи к главе семь для самостоятельного решения
- •Задачи к главе 9 для самостоятельного решения
- •Задачи к главе 10 для самостоятельного решения
10.1.2. Преобразования Лоренца
Преобразования координат и времени при переходе от одной ИСО к другой в СТО называют преобразованиями Лоренца. Классический закон преобразование скоростей по Галилею (*) противоречит постулату о постоянстве скорости света. Действительно, при V0=c закон Галилея дает для скорости света в неподвижной системе отсчета значение равное 2с. Очевидно, что при скоростях, сравнимых со скоростью света, преобразования Галилея не применимы и должны быть заменены другими. Свойства однородности и изотропности пространства требуют, чтобы эти преобразования были линейными.
Будем искать закон преобразования координат х и времени t при переходе от неподвижной системы отсчета К к подвижной К в виде линейной комбинации x и t:
здесь
коэффициенты
зависят от скоростиV0
относительного движения систем отсчета
К и К.
Пусть в начальный момент времени начала координат 0 и 0 обеих СО совпадают (см. рис. 10.3). В момент времени t=t=0 из точки 0 (0) вдоль осей x и x испущен световой сигнал. За время t, (t) он достигнет некоторой точки Р с координатами
.
Подставим соотношения (10.3) в (10.2) и умножим второе из них на с:
.
Из (10.4) следует
.
|
Рис. 10.3. Неподвижная (x,y,z,o) и подвижная (x,y,z,o) системы отсчета |
Если световой сигнал в начальный момент времени был направлен против осей x и х, то координаты точки P, до которой дойдет сигнал спустя время t (t) будут равны:
.
Подставим (10.6) в (10.2) и умножив второе уравнение на с получим:
.
.
Складывая и вычитая (10.5) и (10.8), получим:
.
Точка Оначала координат системы Кв системе К имеет координату x=V0t, а в системе Кона равна нулю (x=0), подставляя эти значения в (10.2) имеем:
Из последних соотношений следует
.
Учитывая, что 11=22имеем
.
Подставляя полученное выражение в (10.11), получим:
.
Используя соотношения (10.9) – (10.13), перепишем формулу (10.2) следующим образом:
.
Используя очевидные равенства:
,
можно записать
.
Выразим xиtчерезxиt, и используя соотношения (10.14) запишем:
=
=
.
По теореме о тождественно равных многочленах, запишем равенство коэффициентов при соответствующих переменных:
.
Отсюда получаем:
.
Для удобства записи формул СТО отношение V0/cобозначают через, с учетом этого соотношение (10.16) можно записывать так:
.
Подставив (10.16) в (10.14), получим формулы преобразований для координаты xи времениt:
Соотношения (10.17) – есть искомые преобразования Лоренца для координат и времени.
Легко заметить, что при малых скоростях, V0<<c, соотношения (10.17) переходят в известные соотношения Галилея (2.4) для преобразования координат и времени:
С формальной точки зрения соотношения (10.17) имеют смысл при обязательном условии, что подкоренное выражение больше нуля. Отсюда следует, что скорость V0не может превышать и даже равняться скорости света.
Инвариантность интервала
Предположим, что в инерциальной системе отсчета К (x1, y1, z1, сt1) – координаты первого события, x2, y2, z2, сt2 – координаты второго события, величина
называется интервалом между этими событиями.
Обозначив расстояние между точками, в которых происходит событие через L12, а длительность события t12=t2–t1, получим для интервала
.
Легко показать, что интервал – инвариантная величина, то есть его величина во всех инерциальных системах отсчета одна и та же. Для доказательства запишем интервал s12 в системе К и s12 в системе К:
.
Воспользуемся формулами (10.18), запишем:
.
Для интервала (s)2 имеем:
Числитель полученного выражения преобразуем отдельно:
.
Возвращаясь к предыдущему соотношению, получим:
Таким
образом, интервал s
– инвариант при переходе от одной ИСО
к другой.