
- •Лекционный блок
- •Глава 1. Кинематика
- •1.1. Основные понятия
- •1.2. Скорость и ускорение
- •1.3. Равномерное и равнопеременное движение
- •1.4. Кинематика движения по окружности
- •Взаимосвязь угловых и линейных характеристик при движении по окружности
- •1.6. Нормальное, тангенциальное и полное ускорения
- •1.7. Кинематика произвольного криволинейного движения
- •1.8. Кинематика колебательного движения
- •1.8.1. Сложение колебаний одного направления
- •1.8.2. Биения
- •1.8.3. Сложение взаимно перпендикулярных колебаний
- •1.9. Кинематика волнового движения
- •1.9.1. Уравнение плоской волны
- •1.9.2. Общие характеристики волны
- •1.9.3. Распространение, отражение и преломление волн
- •1.9.4. Продольные и поперечные волны
- •1.9.5. Интерференция волн
- •1.9.6. Стоячие волны
- •1.9.7. Эффект Доплера
- •Глава 2. Динамика
- •2.1. Первый закон Ньютона. Инерциальные системы отсчета. Принцип относительности
- •2.1.1. Классический закон сложения скоростей
- •2.2. Второй закон Ньютона
- •2.3. Силы в механике
- •2.3.1. Сила всемирного тяготения
- •2.3.2. Сила тяжести
- •2.3.3. Механическая связь. Реакция связи
- •2.3.4. Сила трения.
- •2.3.6. Сила упругости. Закон Гука
- •2.4. Третий закон Ньютона
- •Материальной точки (тела)
- •2.5.1. Импульс материальной точки
- •2.5.2. Импульс механической системы
- •Динамика движения материальной точки по окружности
- •2.7. Динамика вращательного движения относительно неподвижной оси
- •2.7.1. Момент инерции твердого тела
- •Задачи к главе 2 для самостоятельного решения
- •Глава 3. Статика
- •Глава 4. Работа силы. Мощность
- •4.1. Консервативные и неконсервативные силы в механике
- •4.1.1. Работа силы тяжести
- •4.1.2. Работа силы всемирного тяготения
- •4.1.3. Работа силы упругости
- •Глава 5. Энергия
- •5.1. Потенциальная энергия
- •5.2. Потенциальная энергия и сила поля
- •5.3. Кинетическая энергия поступательного движения
- •5.4. Кинетическая энергия вращательного движения
- •5.5. Полная механическая энергия тела (системы)
- •Глава 6. Законы сохранения
- •6.1. Закон сохранения импульса
- •6.2. Закон сохранения момента импульса
- •6.3. Закон сохранения механической энергии
- •6.3.1. Механическая энергия материальной точки
- •6.3.2. Механическая энергия материальной точки (тела) под воздействием произвольных сил
- •6.3.3. Механическая энергия системы
- •6.3.4. Упругое столкновение
- •Глава 7. Динамика малых колебаний
- •7.1. Пружинный маятник
- •7.2. Физический маятник
- •7.3. Математический маятник
- •7.4. Затухающие колебания
- •Влияние величины сопротивления на характер колебательного движения
- •7.6. Вынужденные колебания
- •7.7. Резонанс
- •Глава 8. Движение в неинерциальной системе отсчета
- •Кинематика движения в неинерциальной системе отсчета
- •8.2. Динамика движения в неинерциальной системе отсчета
- •Глава 9. Элементы гидро- и аэродинамики
- •9.1. Основные понятия
- •9.2. Уравнение Бернулли
- •9.3. Формула Торричелли
- •9.4. Горизонтальный поток жидкости
- •9.5. Подъемная сила
- •9.6. Течение вязкой жидкости
- •9.6.1. Установившаяся скорость
- •9.7. Гидростатика
- •9.7.1. Закон Паскаля. Сообщающиеся сосуды
- •9.7.2. Закон Архимеда.
- •Глава 10. Релятивистская механика
- •10.1. Кинематика специальной теории относительности
- •10.1.1. Интервал
- •10.1.2. Преобразования Лоренца
- •10.1.3. Относительность одновременности
- •10.1.4. Относительность длины
- •10.1.5. Относительность длительности событий
- •10.1.6. Релятивистское преобразование скоростей
- •10.1.7. Релятивистское преобразование ускорений
- •10.1.8. Релятивистский эффект Доплера
- •10.2. Динамика специальной теории относительности
- •10.2.1. Релятивистский импульс
- •10.2.2. Основное уравнение динамики сто
- •10.2.3. Релятивистское выражение для энергии
- •10.2.4. Взаимосвязь массы и энергии
- •10.2.5. Связь между энергией и импульсом тела
- •Соотношения (10.46) и (10.52) показывают, что энергия тела и его импульс зависят от системы отсчета, принятой в данном конкретном случае. Покажем, что величина
- •Примеры решения задач
- •Примеры решения задач по кинематике криволинейного движения
- •Примерная схема решения задач по кинематике колебаний
- •Задачи к главе I для самостоятельного решения
- •Задачи к главе 2 для самостоятельного решения
- •Задачи к главе 3 для самостоятельного решения
- •Задачи к главе 6 для самостоятельного решения
- •Задачи к главе семь для самостоятельного решения
- •Задачи к главе 9 для самостоятельного решения
- •Задачи к главе 10 для самостоятельного решения
9.7.2. Закон Архимеда.
На поверхность твердого тела, опущенного в жидкость (газ), действуют силы давления. Эти силы увеличиваются с глубиной погружения, поэтому на нижнюю часть тела будет действовать со стороны жидкости большая сила давления, чем на верхнюю. Равнодействующая сил давления представляет собой выталкивающую силу, или силу Архимеда.
Для нахождения величины силы Архимеда мысленно заменим полностью погруженное в жидкость тело жидкостью в объеме тела (рис. 9.11).
Ясно, что выделенный объем жидкости будет неподвижен относительно остальной жидкости. На него со стороны окружающей жидкости будет действовать такая же выталкивающей сила, как и на погруженное тело.
|
Рис. 9.11 К выводу закона Архимеда |
По третьему закону Ньютона, выделенный объем жидкости будет действовать на окружающую жидкость с той же по модулю, но противоположно направленной силой – своим весом. Проведенные рассуждения позволяют сформулировать закон Архимеда.
Закон Архимеда: на тело, погруженное в жидкость (или газ), действует выталкивающая сила, равная весу вытесненной жидкости:
,
где ρ – плотность среды, в которую погружено тело, V – вытесненный телом объем среды.
Подчеркнем, что в законе Архимеда говорится о весе вытесненной жидкости. Как известно, вес тела не всегда совпадает с силой тяжести, действующей на него. Теперь ясно, что выталкивающая сила отсутствует в состоянии невесомости, например, в свободно падающем сосуде с жидкостью, и в космическом корабле, двигатели которого не работают.
Если часть поверхности тела плотно прилегает к стенке или дну сосуда так, что между ними нет прослойки жидкости, то закон Архимеда неприменим. Эта ситуация изображена на рис. 9.12. Брусок не всплывает, т.к. со стороны воды на него действует сила, прижимающая его ко дну, а не выталкивающая вверх.
|
Рис.9.12. Отсутствие выталкивающей силы |
Приведенная формулировка закона Архимеда остается справедливой в случаях, когда тело плавает в жидкости (в том числе в движущейся) или частично опущено в нее через свободную поверхность жидкости. Линия действия выталкивающей силы будет проходить через центр тяжести вытесненного объема жидкости, который может не совпадать с центром тяжести тела.
Пример 9.1.
Тонкий однородный стержень, укрепленный вверху шарнирно, опущен в воду так, что две трети стержня оказались в воде. Определите плотность материала стержня, считая плотность воды известной.
Решение
=? L1=2L/3 B=10 3 кг/м3
|
|
На стержень действуют сила тяжести стержня mg, приложенная в центре стержня, сила Архимеда FA, приложенная в центре погруженной в воду части стержня, и сила N реакции шарнира, приложенная в точке А шарнира.
Запишем условие равновесия стержня:
,
или в подробной записи
.
(1)
Радиус-векторы
RgиRAпоказаны на рисунке
светлыми стрелками. Проецируя
уравнение на ось z, и учитывая, что ,
так как RN
=0, получим:
(2)
Пусть S – площадь поперечного сечения стержня, – плотность материала стержня, тогда масса стержня m=ρLS, а сила Архимеда
.
Подставляя выражения для m и FA в уравнение (2), после преобразований получим:
,
или
=888
кг/м3.
Пример 9.2.
Вода движется по трубе переменного сечения, пусть V1=15 см/с и S1/S2= 4 . Каково различие в высоте воды в вертикальных трубках?
d=?
V1=15 cм/c, S1/S2= 4
Решение
Воспользуемся формулами (9.10) и (9.11), запишем
p1-p2= ρgd=ρ(V22 – V12)/2,
откуда следует:
d=(V22 – V12)/2g.
Жидкость несжимаема, значит поток, проходящий через малое сечение трубы, такой же, как и поток, проходящий через большое сечение, отсюда: S1V1=S2V2. Найдем V2.
|
Подставляя значения V1 и V2 в выражение для d, находим:
.