
- •Лекционный блок
- •Глава 1. Кинематика
- •1.1. Основные понятия
- •1.2. Скорость и ускорение
- •1.3. Равномерное и равнопеременное движение
- •1.4. Кинематика движения по окружности
- •Взаимосвязь угловых и линейных характеристик при движении по окружности
- •1.6. Нормальное, тангенциальное и полное ускорения
- •1.7. Кинематика произвольного криволинейного движения
- •1.8. Кинематика колебательного движения
- •1.8.1. Сложение колебаний одного направления
- •1.8.2. Биения
- •1.8.3. Сложение взаимно перпендикулярных колебаний
- •1.9. Кинематика волнового движения
- •1.9.1. Уравнение плоской волны
- •1.9.2. Общие характеристики волны
- •1.9.3. Распространение, отражение и преломление волн
- •1.9.4. Продольные и поперечные волны
- •1.9.5. Интерференция волн
- •1.9.6. Стоячие волны
- •1.9.7. Эффект Доплера
- •Глава 2. Динамика
- •2.1. Первый закон Ньютона. Инерциальные системы отсчета. Принцип относительности
- •2.1.1. Классический закон сложения скоростей
- •2.2. Второй закон Ньютона
- •2.3. Силы в механике
- •2.3.1. Сила всемирного тяготения
- •2.3.2. Сила тяжести
- •2.3.3. Механическая связь. Реакция связи
- •2.3.4. Сила трения.
- •2.3.6. Сила упругости. Закон Гука
- •2.4. Третий закон Ньютона
- •Материальной точки (тела)
- •2.5.1. Импульс материальной точки
- •2.5.2. Импульс механической системы
- •Динамика движения материальной точки по окружности
- •2.7. Динамика вращательного движения относительно неподвижной оси
- •2.7.1. Момент инерции твердого тела
- •Задачи к главе 2 для самостоятельного решения
- •Глава 3. Статика
- •Глава 4. Работа силы. Мощность
- •4.1. Консервативные и неконсервативные силы в механике
- •4.1.1. Работа силы тяжести
- •4.1.2. Работа силы всемирного тяготения
- •4.1.3. Работа силы упругости
- •Глава 5. Энергия
- •5.1. Потенциальная энергия
- •5.2. Потенциальная энергия и сила поля
- •5.3. Кинетическая энергия поступательного движения
- •5.4. Кинетическая энергия вращательного движения
- •5.5. Полная механическая энергия тела (системы)
- •Глава 6. Законы сохранения
- •6.1. Закон сохранения импульса
- •6.2. Закон сохранения момента импульса
- •6.3. Закон сохранения механической энергии
- •6.3.1. Механическая энергия материальной точки
- •6.3.2. Механическая энергия материальной точки (тела) под воздействием произвольных сил
- •6.3.3. Механическая энергия системы
- •6.3.4. Упругое столкновение
- •Глава 7. Динамика малых колебаний
- •7.1. Пружинный маятник
- •7.2. Физический маятник
- •7.3. Математический маятник
- •7.4. Затухающие колебания
- •Влияние величины сопротивления на характер колебательного движения
- •7.6. Вынужденные колебания
- •7.7. Резонанс
- •Глава 8. Движение в неинерциальной системе отсчета
- •Кинематика движения в неинерциальной системе отсчета
- •8.2. Динамика движения в неинерциальной системе отсчета
- •Глава 9. Элементы гидро- и аэродинамики
- •9.1. Основные понятия
- •9.2. Уравнение Бернулли
- •9.3. Формула Торричелли
- •9.4. Горизонтальный поток жидкости
- •9.5. Подъемная сила
- •9.6. Течение вязкой жидкости
- •9.6.1. Установившаяся скорость
- •9.7. Гидростатика
- •9.7.1. Закон Паскаля. Сообщающиеся сосуды
- •9.7.2. Закон Архимеда.
- •Глава 10. Релятивистская механика
- •10.1. Кинематика специальной теории относительности
- •10.1.1. Интервал
- •10.1.2. Преобразования Лоренца
- •10.1.3. Относительность одновременности
- •10.1.4. Относительность длины
- •10.1.5. Относительность длительности событий
- •10.1.6. Релятивистское преобразование скоростей
- •10.1.7. Релятивистское преобразование ускорений
- •10.1.8. Релятивистский эффект Доплера
- •10.2. Динамика специальной теории относительности
- •10.2.1. Релятивистский импульс
- •10.2.2. Основное уравнение динамики сто
- •10.2.3. Релятивистское выражение для энергии
- •10.2.4. Взаимосвязь массы и энергии
- •10.2.5. Связь между энергией и импульсом тела
- •Соотношения (10.46) и (10.52) показывают, что энергия тела и его импульс зависят от системы отсчета, принятой в данном конкретном случае. Покажем, что величина
- •Примеры решения задач
- •Примеры решения задач по кинематике криволинейного движения
- •Примерная схема решения задач по кинематике колебаний
- •Задачи к главе I для самостоятельного решения
- •Задачи к главе 2 для самостоятельного решения
- •Задачи к главе 3 для самостоятельного решения
- •Задачи к главе 6 для самостоятельного решения
- •Задачи к главе семь для самостоятельного решения
- •Задачи к главе 9 для самостоятельного решения
- •Задачи к главе 10 для самостоятельного решения
6.2. Закон сохранения момента импульса
Если система замкнута, а, значит, суммарный момент внешних сил равен нулю, то из уравнения (2.45) следует, что dL/dt=0, и L=const, соответственно. Таким образом, момент импульса замкнутой системы материальных точек не меняется с течением времени. Полученный результат позволяет сформулировать следующий закон сохранения:
момент импульса замкнутой механической системы остается постоянным при любых изменениях, происходящих в ней.
Замечания
1. Момент импульса системы может сохраняться при наличии внешних сил при условии взаимной компенсации их моментов.
2. Момент импульса системы может сохраняться если действует внешняя центральная сила, а полюс О выбран в центре силового поля.
3. Для произвольной механической системы закон сохранения момента импульса не удается получить простым обобщением закона сохранения момента импульса для материальной точки, т. к. нельзя провести преобразования аналогичные преобразованиям, переводящим (2.22) в (2.31). Это связано с тем, что, в отличие от аддитивных величин, таких, как момент импульса системы L, момент внешних сил M и момент инерции, угловые скорость и ускорение не аддитивны и для различных элементов системы могут иметь различные значения, и для системы, как единого целого, не определены.
6.3. Закон сохранения механической энергии
Если на материальную точку (тело) действует сила, то ее (его) кинетическая энергия не остается постоянной. Интегрируя соотношение (5.12), получим, что
.
Физический смысл полученной формулы
заключается в следующем:
приращение кинетической энергии материальной точки равно работе равнодействующей сил, приложенных к ней.
6.3.1. Механическая энергия материальной точки
(тела) под воздействием консервативной силы
Работа консервативной силы при перемещении материальной точки (тела) из положения 1 в положение 2 – А12может быть представлена (см. (5.1)) как убыль потенциальной энергии
.
Соотношение (6.4), в свою очередь, указывает, что в результате совершения работы увеличивается кинетическая энергия. Сравнивая (5.1) и (6.4) приходим к выводу, что:
,
или собирая члены, соответствующие одному состоянию в различных частях уравнения:
.
Полученный результат означает, что величина полной механической энергии частицы (тела) E=T+U для в поле консервативных сил остается постоянной.
При отсутствии неконсервативных сил полная механическая энергия остается постоянной – сохраняется.
Увеличение кинетической энергии системы в присутствии консервативных сил происходит за счет убыли ее потенциальной энергии. Наоборот, уменьшению кинетической энергии системы в присутствии консервативных сил соответствует увеличение ее потенциальной энергии.
6.3.2. Механическая энергия материальной точки (тела) под воздействием произвольных сил
В общем случае на материальную точку (тело) могут действовать силы консервативные Fи неконсервативныеF*. В этом случае (см. (4.4)) полная работа А12при перемещении из положения 1 в положение 2 равна сумме работ консервативных и неконсервативных сил
.
Как известно (5.1), работа консервативных сил равна убыли потенциальной энергии, и соотношение (6.5) можно переписать так
.
Преобразуем полученное выражение
,
здесь E=T+U, как всегда, – полная механическая энергия. Полученный результат означает, что
работа неконсервативных сил затрачивается на изменение полной механической энергии.
При условии, что кинетическая энергия в начальном и конечном положениях системы одна и та же, работа неконсервативных сил идет на изменение потенциальной энергии.