- •Лекционный блок
- •Глава 1. Кинематика
- •1.1. Основные понятия
- •1.2. Скорость и ускорение
- •1.3. Равномерное и равнопеременное движение
- •1.4. Кинематика движения по окружности
- •Взаимосвязь угловых и линейных характеристик при движении по окружности
- •1.6. Нормальное, тангенциальное и полное ускорения
- •1.7. Кинематика произвольного криволинейного движения
- •1.8. Кинематика колебательного движения
- •1.8.1. Сложение колебаний одного направления
- •1.8.2. Биения
- •1.8.3. Сложение взаимно перпендикулярных колебаний
- •1.9. Кинематика волнового движения
- •1.9.1. Уравнение плоской волны
- •1.9.2. Общие характеристики волны
- •1.9.3. Распространение, отражение и преломление волн
- •1.9.4. Продольные и поперечные волны
- •1.9.5. Интерференция волн
- •1.9.6. Стоячие волны
- •1.9.7. Эффект Доплера
- •Глава 2. Динамика
- •2.1. Первый закон Ньютона. Инерциальные системы отсчета. Принцип относительности
- •2.1.1. Классический закон сложения скоростей
- •2.2. Второй закон Ньютона
- •2.3. Силы в механике
- •2.3.1. Сила всемирного тяготения
- •2.3.2. Сила тяжести
- •2.3.3. Механическая связь. Реакция связи
- •2.3.4. Сила трения.
- •2.3.6. Сила упругости. Закон Гука
- •2.4. Третий закон Ньютона
- •Материальной точки (тела)
- •2.5.1. Импульс материальной точки
- •2.5.2. Импульс механической системы
- •Динамика движения материальной точки по окружности
- •2.7. Динамика вращательного движения относительно неподвижной оси
- •2.7.1. Момент инерции твердого тела
- •Задачи к главе 2 для самостоятельного решения
- •Глава 3. Статика
- •Глава 4. Работа силы. Мощность
- •4.1. Консервативные и неконсервативные силы в механике
- •4.1.1. Работа силы тяжести
- •4.1.2. Работа силы всемирного тяготения
- •4.1.3. Работа силы упругости
- •Глава 5. Энергия
- •5.1. Потенциальная энергия
- •5.2. Потенциальная энергия и сила поля
- •5.3. Кинетическая энергия поступательного движения
- •5.4. Кинетическая энергия вращательного движения
- •5.5. Полная механическая энергия тела (системы)
- •Глава 6. Законы сохранения
- •6.1. Закон сохранения импульса
- •6.2. Закон сохранения момента импульса
- •6.3. Закон сохранения механической энергии
- •6.3.1. Механическая энергия материальной точки
- •6.3.2. Механическая энергия материальной точки (тела) под воздействием произвольных сил
- •6.3.3. Механическая энергия системы
- •6.3.4. Упругое столкновение
- •Глава 7. Динамика малых колебаний
- •7.1. Пружинный маятник
- •7.2. Физический маятник
- •7.3. Математический маятник
- •7.4. Затухающие колебания
- •Влияние величины сопротивления на характер колебательного движения
- •7.6. Вынужденные колебания
- •7.7. Резонанс
- •Глава 8. Движение в неинерциальной системе отсчета
- •Кинематика движения в неинерциальной системе отсчета
- •8.2. Динамика движения в неинерциальной системе отсчета
- •Глава 9. Элементы гидро- и аэродинамики
- •9.1. Основные понятия
- •9.2. Уравнение Бернулли
- •9.3. Формула Торричелли
- •9.4. Горизонтальный поток жидкости
- •9.5. Подъемная сила
- •9.6. Течение вязкой жидкости
- •9.6.1. Установившаяся скорость
- •9.7. Гидростатика
- •9.7.1. Закон Паскаля. Сообщающиеся сосуды
- •9.7.2. Закон Архимеда.
- •Глава 10. Релятивистская механика
- •10.1. Кинематика специальной теории относительности
- •10.1.1. Интервал
- •10.1.2. Преобразования Лоренца
- •10.1.3. Относительность одновременности
- •10.1.4. Относительность длины
- •10.1.5. Относительность длительности событий
- •10.1.6. Релятивистское преобразование скоростей
- •10.1.7. Релятивистское преобразование ускорений
- •10.1.8. Релятивистский эффект Доплера
- •10.2. Динамика специальной теории относительности
- •10.2.1. Релятивистский импульс
- •10.2.2. Основное уравнение динамики сто
- •10.2.3. Релятивистское выражение для энергии
- •10.2.4. Взаимосвязь массы и энергии
- •10.2.5. Связь между энергией и импульсом тела
- •Соотношения (10.46) и (10.52) показывают, что энергия тела и его импульс зависят от системы отсчета, принятой в данном конкретном случае. Покажем, что величина
- •Примеры решения задач
- •Примеры решения задач по кинематике криволинейного движения
- •Примерная схема решения задач по кинематике колебаний
- •Задачи к главе I для самостоятельного решения
- •Задачи к главе 2 для самостоятельного решения
- •Задачи к главе 3 для самостоятельного решения
- •Задачи к главе 6 для самостоятельного решения
- •Задачи к главе семь для самостоятельного решения
- •Задачи к главе 9 для самостоятельного решения
- •Задачи к главе 10 для самостоятельного решения
5.2. Потенциальная энергия и сила поля
Зная силы, действующие на частицы механической системы, можно определить величину ее потенциальной энергии. Для основных сил, рассматриваемых в механике, соответствующие расчеты были проведены в пункте 4.1. Можно решить обратную задачу: по величине потенциальной энергии определить величину действующей консервативной силы. Рассмотрим материальную точку m, находящуюся в поле консервативных сил. Очевидно, ее потенциальная энергия зависит от положения, т. е. от координат материальной точки: U=U(X,Y,Z). Предположим, что материальная точка m совершила бесконечно малое перемещение dS. Сила, действующая на нее, совершила при этом элементарную работу dA. Известно (5.1), что работа консервативных сил равна убыли потенциальной энергии, т. е.:
.
Для определения вектора силы достаточно определить его проекции на оси прямоугольной системы координат. Уравнение (5.6) можно записать так
.
С другой стороны, дифференциал dU функции U равен:
.
Сравнивая коэффициенты при dX, dY и dZ в последних соотношениях, приходим к выводу, что проекции вектора силы на оси координат равны первым производным потенциальной энергии, взятым с противоположным знаком:
Соотношения (5.9) принято записывать в векторной форме следующим образом:
,
или иначе, с использованием градиента – векторного оператора Гамильтона
.
Так:
.
5.3. Кинетическая энергия поступательного движения
Пусть на материальную точку, масса которой равна m, действует сила F. Запишем уравнение движения этой точки:
.
Умножим обе части уравнения скалярно на элементарное перемещение dr и преобразуем полученное выражение с учетом того, что элементарное перемещение dr=Vdt:
Таким образом, получаем
.
Проинтегрируем обе части полученного равенства:
Кинетической энергией поступательного движения материальной точки (тела) называют скалярную величину Т=, равную одной второй произведения ее (его) массы на квадрат скорости.
Соотношение (5.13) позволяет указать физический смысл кинетической энергии. Кинетическая энергия показывает, какую работу совершили силы, чтобы покоящемуся первоначально телу сообщить скорость V.
Формула для кинетической энергии была получена с использованием второго закона Ньютона, поэтому она верна только в инерциальной системе отсчета. Заметим, что величина кинетической энергии материальной точки зависит от выбора системы отсчета, поскольку ее скорость в разных ИСО различна (см. (2.4.)). Можно показать, что кинетическая энергия Т в некоторой системе отсчета К равна:
,
где m – масса частицы (тела), T – кинетическая энергия материальной точки в подвижной системе отсчета К, движущейся со скоростью V относительно неподвижной системы К, – скорость частицы (центра масс тела) относительно подвижной системы отсчета К.
Кинетическая энергия – величина аддитивная, т. е.
кинетическая энергия механической системы равна сумме кинетических энергий всех ее составляющих:
,
здесь mi и Vi – масса и скорость частиц (тел) системы.